

6-1 305-CD-027-002

6. AITTL - Algorithm I&T CSCI

6.1 CSCI Overview
The purpose of the Algorithm Integration and Test Tools (AITTL) Computer Software
Configuration Item (CSCI) is to provide the software tools required to integrate and test (I&T) the
science software at the Distributed Active Archive Center (DAAC). The science software will be
developed by a Science Computing Facility (SCF), which may be at a different location than the
DAAC.

The division of responsibilities between the DAAC and the SCF is generally the following: The
SCF is responsible for developing the science software and ensuring that the generated products
are scientifically correct. The DAAC is responsible for integrating the science software into the
production environment, ensuring that the software will run safely (i.e., will not interfere with the
production environment or with other product generation), and running the software in a
production mode.

The developer/operator division that is characteristic of the science software life cycle causes the
DAAC I&T personnel to have certain special requirements. The I&T team needs to be able to do
the following things:

• Receive a science software delivery from the SCF. The delivery will be made either
electronically or via hard media.

• Examine the science software delivery for correctness and completeness. This includes:
examining accompanying documentation, verifying that prescribed coding standards have
been followed, and running preliminary static and dynamic diagnostic tools to check for
potential errors. The delivered files must also be placed under configuration control.

• Compile and link the delivered source files.

• Run test cases. For the most part, these test cases will be supplied by the SCF as part of the
delivery. Also supplied by the SCF, for each test case, will be a set of required input files
and a corresponding set of output files. Since some of the input files may already reside at
the DAAC, the I&T personnel also need the ability to manually stage inputs from the data
servers. The DAAC I&T team will re-run each test case and compare their outputs with
those supplied by the SCF. Because the SCF and DAAC machines may have different
precision, the file comparison utility needs to be more sophisticated than the usual UNIX
"diff" tool: it needs to be able to screen out differences that are due only to differences in
precision. In addition, the ability to examine product metadata is required.

• Diagnose errors. This requires access to: interactive debuggers, screen dump utilities, data
visualization tools, and so on.

• Collect resource requirement statistics. This includes: CPU time, memory requirements,
disk space requirements, and so on. The collection of such statistics is required both as a
"sanity check", to make sure that the measured requirements match the expected values,
and also for the PGE Profile, which is used by the Planning and Processing systems to
execute the science software properly.

6-2 305-CD-027-002

• Update the system databases once the science software has completed acceptance testing.
This includes: adding the source code and documentation to the data server, so that they
may be distributed to requesting users, and adding the resource requirement information to
the PGE Profile.

• Write reports and maintain the I&T log.

• Write additional ad-hoc test tools.

Satisfaction of these requirements is distributed across several systems. The ingest client for
science software will be supplied by the Ingest Subsystem (INS) of the Science Data Processing
Segment (SDPS). Configuration management and problem tracking tools will be provided by the
Management Subsystem (MSS) of the Communications and System Management Segment
(CSMS). Compilers, linkers, debuggers, and other development and operating system tools will be
furnished by the Algorithm Integration and Test Hardware Configuration Item (AITHW) of the
Data Processing Subsystem (DPS) of SDPS, since such utilities are closely wedded to the
processing platforms. In addition, some of the standards checking and profiling requirements will
probably be satisfied by AITHW as well, since certain of these capabilities will be found in
compilers and development environments. The remaining requirements will be satisfied by
AITTL.

The AITTL-supplied tools therefore fall into the following categories:

• Tools to view science software documentation.
• Tools to check compliance of science software to ESDIS-specified coding standards.
• Code analysis tools.
• Data visualization tools.
• HDF file comparison tool.
• Binary file comparison environment.
• Profiling tool.
• Tool to register the science software with the Planning and Data Processing system.
• Tools to add and update Science Software Archive Packages (SSAPs) in the Data Server.
• Tools for writing reports and maintaining the I&T logs.
• Tools for checking Process Control Files and for prohibited functions.
• Tools to display product metadata.

Most of the functions for the Algorithm Integration & Test CSCI are being developed as working
prototypes and delivered for Interim Release 1 (Ir1). The Release B design approach is based on
using Ir1 and any Release A changes as a basis for which to add Release B capabilities. Since
AITTL CSCI is very operations oriented, as much feedback from DAAC Operations who have
used the Ir1 AITTL tools will be incorporated into the

 Release B AITTL capabilities. Unlike Ir1,
the Job Scheduler COTS product, AutoSys, will not be provided as part of AITTL to manage the
execution of jobs on AITTL HW. To execute PGEs using AutoSys, the PGE must have a Profile
defined in the PDPS database, and must be scheduled via the Planning Subsystem and executed via
the Processing Subsystem. The tools to create and update a PGE Profile in the PDPS database are
part of the AITTL CSCI and are described (along with the other functions of AITTL) in this
section.

6-3 305-CD-027-002

The formation of the AITTL design material is the following:

a. Section 6.2—AITTL Context.

b. Section 6.3—AITTL Object Model. This contains and describes the four object models of
AITTL: AIT Manager GUI, Science Software Archive Package GUI, the PGE Registration
GUI, and the manual interface to stage and destage files.

c. Section 6.4—AITTL Class Descriptions. This describes the classes in the AITTL Object
Models.

d. Section 6.5—AITTL Dynamic Model. This has detailed event traces and descriptions for
the classes in the AITTL Object Models.

e. Section 6.6—AITTL Functional Model representing the many tool dependent data flows
for AITTL.

f. Section 6.7—AITTL Operational Scenarios, presents some operational scenarios showing
how the AITTL tools may be used in the integration and test process, rather than the usual
dynamic model.

g. Section 6.8—AITTL Structure which defines the CSC components of the AITTL CSCI.

h. Section 6.9—AITTL Management and Operation defines some management and
operations concepts used in developing the AITTL CSCI design.

For additional information on science software integration and test procedures, see also:
205-CD-002-001, Science User's Guide and Operations Procedures Handbook for the ECS Project,
Part 4, and JU9403V1, Science Software Integration and Test. For information on the ESDIS
science software coding standards and guidelines, see: 423-16-01, Data Production Software and
Science Computing Facility (SCF) Standards and Guidelines.

6.2 CSCI Context
The context diagram for the AITTL CSCI is shown in Figure 6.2-1.

6-4
305-C

D
-027-002

Figure 6.2-1. AITTL Context Diagram

Algorithm
Integration and

Test Tools

Authorized
User

PlanningData
Server

Printer
Operator

This System

Data Server Information,
Data File,

Science Software Archive Packages,
Science Software Archive Package

Request Responses

Display
I&T Log

PGE Profile Request,
PGE Profile Update

PGE Profile Information,
PGE Profile Request

Responses

Printed Document,
Printed I&T Report

Standards, Guidelines, File
Comparison Threshold, Report Information,
Log Information, PGE Profile commands,

Science Software Archive Package commands,
I&T Tool commands

Science Software Test Results,
Science Software Archive Package Requests,

Science Software Archive Package
Updates

I&T Tool Results,
Displayed Document,
Displayed I&T Report,
Displayed Data File,

Science Software Information

Log Display
Command

6-5 305-CD-027-002

AITTL has interfaces with two other ECS subsystems: the Data Server Subsystem and the
Planning Subsystem.

The purpose of the interface with the Data Server is for AITTL to update and archive a tested
science software delivery

(Science Software Archive Package), and to archive test results (Science
Software Test Results). The Data Server provides information about science software that is
already archived on the data server (Data Server Information), transfers requested data files (Data
File) and Science Software Archive Packages Requests (Science Software Archive Package), and
issues responses to AITTL requests (Science Software Archive Package Request Responses).

The purpose of the interface with Planning is to update the PGE Profile (PGE Profile Update), part
of the PDPS database that contains information defining each product generation executive (PGE)
to the Planning and Data Processing Subsystems. This information is needed by Planning to
effectively schedule and plan PGEs, and is passed along to the Data Processing Subsystem so that
PGEs can be executed correctly and the results reported back to the operator. Information about
PGEs already recorded in the PDPS database are requested from Planning (PGE Profile Request)
and received from Planning (PGE Profile Information) along with the response (PGE Profile
Request Response).

The primary interface for AITTL is with the operator(s) responsible for integration and test. The
operator sends commands (I&T Tool Commands) to the various tools, supplies the standards
checkers with the desired standards (Standards) and guidelines (Guidelines), supplies the file
comparison utility with thresholds (File Comparison Threshold) to filter out precision differences,
edits existing Science Software Archive Packages and creates new ones to link delivered source
code with its test data, documentation, etc. (Science Software Archive Package commands),
updates and creates the information about the tested PGE in the PDPS database (PGE Profile
commands), and enters information into reports (Report Information) and into the integration and
test log (Log Information). The tools display various results (I&T Tool Results), science software
documentation (Displayed Document), Science Software Archive Package file lists and metadata
and PGE Profile attributes (Science Software Information), and integration and test reports
(Displayed I&T Report) for the operator to examine. The Authorized User is allowed to issue log
commands (Log Display Commands) and receive a display of the I&T log (Display I&T Log).
Finally, the tools send a hard copy of science software documentation (Printed Document), as well
as integration and test reports and tool results (Printed I&T Report) to the printer.

6.3 CSCI Object Model
The CSCI object model is broken into a number of views; Figures 6.3-1 to 6.3-4. Each view
captures a different aspect of the CSCI capabilities. The AIT Manager object model is the starting
point and spawns the classes in the other views via choices in its GUI menus. Complete
descriptions of the classes are provided in text in Section 6.4.

6-6 305-CD-027-002

6.3.1 AIT Manager GUI View

This section gives the object model for the AIT Manager GUI. This GUI is used by the DAAC
operator to check in and verify the science software code as delivered by the SCFs. The GUI runs
instrument-specific compilation and execution scripts, configuration management scripts, custom
code checking, file display and comparison tools, and COTS tools such as office automation and
analysis environment programs. The AIT Manager GUI contains a graphical checklist of AI&T
steps in delivery and testing of science software, and a display of a log file. All other views are
started from this GUI via menu selections.

Figure 6.3-1 shows the Algorithm Integration and Test Manager Release B object model.

6-7
305-C

D
-027-002

Figure 6.3-1. AIT Manager GUI Object Model

DpAtMgrCheckPcfGui

DpAtMgrCom

DpAtMgrCmdLineData

DpAtMgrProhibFuncListData

DpAtMgrCheckProhibFuncCom

DpAtMgrCheckProhibFuncGui

myLanguage
myProhibFuncList
myNumProhibFuncs

ReadProhibFuncs(EcTChar*, EcTChar**)
GetProhibFuncs(EcTChar**)
$DpAtProhibFuncListData(EcTChar*)
GetNumProhibFuncs(EcTInt)

DpAtMgrCheckHdfFile

MgrGui

DpAtMgr

DpAtMgrInstrConfigData

DpAtMgrChecklistData

DpAtMgrLogData

DpAtMgrGuiActivityData

myActivityRequest
mySelectedArea
myMenuSelection
myText
myProgramReturnValue

$DpAtMgrGuiActivityData()
PutSelectedArea(EcTInt)
PutMenuSelection(EcTInt*)
GetSelectedArea()
GetMenuSelection()
PutActivityRequest(EcTInt)
GetActivityRequest()
GetProgramReturnValue()
PutProgramReturnValue(EcTInt)

xterm

Windows emulator

Processor(DpAtMgrGuiActivityData, DpAtMgrChecklistData, DpAtMgrLogData)
Checklist(DpAtMgrChecklistData,EcTBoolean*)
Log(DpAtMgrLogData,DpAtMgrChecklistData)
File(EcTInt*)
Options(EcTInt*)

Analysis environment

EOSVIEW

Instrument-specific script

Web browser

Text-graphics viewer

Postscript file viewer

FORTRAN 77 code checker

General visualization tool

TOOL menu items

UTILITY menu items

DpAtProcGui

myHelpFIleLogicals

RUN menu items

CM script

Help(EcTInt*)

myMotifRcFileData

SpawnProgram(EcTChar*)
RunProgram(EcTChar*)
Processor(DpAtMgrGuiActivityData,DpAtMgrChecklistData,DpAtMgrLogData)
DisplayReturnValue(EcTChar*,EcTInt)

DpAtPgeRegistation

DpAtSSAPGuiNB

myNumScripts
myScriptOptions
myLogFileLogical
myChecklistFileLogical
myScriptFileLogicals
myScriptLabels

ReadFile()
WriteToFile()
GetLogFileLogical()
GetChecklistFileLogical()
$DpAtMgrInstrConfigData()
WriteMotifRcFile()

DpAtMgrBinaryFileEnvironmentGui

DpAtPGERegistrationFile

DpAtSSAPFile

myStaticMotifRcFileLogical
myInstrConfigLogical
myInstrumentName

PutStaticMotifRcFileLogical(PGSt_PC_Logical)
GetStaticMotifRcFileLogical()
WriteToFile()
$DpAtMgrCmdLineData()
GetInstrConfigLogical()
GetInstrumentName()
PutInstrConfigLogical(PGSt_PC_Logical)
PutInstrumentName(EcTChar*)

myDate
myTime
myChecklistIndex
myAnnotation
myItemId
myFileHandle
myActivityFlag

$DpAtMgrLogData()
PutChecklistIndex(EcTInt)
GetActivityFlag()
WriteLogEntry()
ReadLogEntry(EcTInt)
FindLogEntryGui()
EditLogAnnotation()
PutActivityFlag(EcTInt)

myItemIds
myLabels
myActivityFlag
myCurrentIndex
myItemIsChecked
myNumItems

CurrentIndexIsChecked()
PutActivityFlag(EcTInt)
GetActivityFlag()
ChangeItemState()
GetCurrentIndex()
PutCurrentIndex(EcTInt)
SaveToFile()
$DpAtMgrChecklistData()

App Offpage

Offpage

Offpage

Offpage

 - : EcTChar* = "\0"
 - : EcTChar**
 - : EcTInt = 0

 -
 +
 +
 +

Offpage

 - : EcTint
 - : EcTInt
 - : array of EcTInt
 - : RWCString
 - : EcTInt

 +
 +
 +
 +
 +
 +
 +
 +
 +

Offpage

Offpage

 + : EcTInt
 + : EcTInt

 + : EcTInt
 + : EcTInt

Offpage

Offpage

Offpage

Offpage

Offpage

Offpage

Offpage

Offpage
Offpage

 - : PGSt_PC_Logical*

Offpage

 + : EcTInt

 - : EcTChar**

 + : EcTInt
 + : EcTInt
 + : EcTInt
 + : EcTInt

Offpage

[Boundary]

Offpage

 - : EcTInt = 0
 - : EcTChar**
 - : PGSt_PC_Logical = 0
 - : PGSt_PC_Logical = 0
 - : PGSt_PC_Logical*
 - : EcTChar**

 + : EcTInt
 + : EcTInt
 + : PGSt_PC_Logical
 + : PGSt_PC_Logical
 +
 + : EcTInt

Offpage

Offpage

Offpage

 - : RWCString
 - : EcTInt
 - : RWCString

 +
 +
 +
 +
 +
 +
 +
 +

 - : DpTAtMgrDate
 - : DPTAtMgrTime
 - : EcTInt = 0
 - : EcTChar*
 - : EcTInt = 0
 - : PGSt_IO_Gen_FileHandle
 - : EcTInt = 0

 +
 +
 + : EcTInt
 + : EcTInt
 + : EcTInt
 + : EcTInt
 + : EcTInt
 + : EcTInt

 - : EctInt
 - : RWCString
 - : EctInt
 - : Ectint
 - : EcInt
 - : EctInt

 +
 +
 +
 +
 +
 +
 +
 +

GetChecklistFileLogical

GetInstrConfigLogical
GetStaticMotifRcFileLogical

Processor
ctor

PutActivityFlag
GetActivityFlag
WriteLogEntry
ReadLogEntry

FindLogEntryGui

GetActivityFlag
SaveToFile

ChangeItemState
CurrentIndexIsChecked

EditLogAnnotation

PutSelectedArea
PutMenuSelection
GetActivityRequest

PutProgramReturnValue

Processor
ctor()

PutActivityFlag
PutCurrentIndex

GetSelectedArea
GetMenuSelection
PutActivityRequest

GetProgramReturnValue

ctor ctor

ctor

GetLogFileLogical

ctor

RunProgram

SpawnProgram

SpawnProgram

SpawnProgram

SpawnProgram

RunProgram

RunProgram

RunProgram

SpawnProgram

SpawnProgram
SpawnProgram

SpawnProgram

SpawnProgram

ctor

RunProgram

Input

Input

executes

executes

executes

executes

6-8 305-CD-027-002

6.3.2 Science Software Archive Package (SSAP) GUI View

This section gives the object model for the Science Software Archive Package (SSAP) GUI. This
GUI is used by the DAAC operator(s) to view the list of existing SSAPs at the Data Server, to
retrieve, modify, or delete SSAPs, or to create an entirely new SSAP and store it to the Data Server.
This GUI spawns other GUIs (also shown on the diagram) that allow the operator to manipulate
the list of files in an SSAP, or to view and alter the SSAP metadata. An access control class is
provided to assure that any SSAP changes are authorized and logged.

Figure 6.3-2 shows the Science Software Archive Package (SSAP) GUI object model.

6-9
305-C

D
-027-002

Figure 6.3-2. Science Software Archive Package GUI Object Model

DpAtEditSSAPMetaDataGuiNB

DpAtSSAPGuiNB

DpAtAccessNB

DpAtSSAPFile

DpAtEditSSAPFileListGuiNB

DsClESDTReferenceCollector<RWVector>

DsClRequest

DsClCommand

GlParameterList

GlParameter

mySSAP
mySSAPFiles
mySSAPFile

$DpAtEditSSAPFileListGuiNB(DsNsScienceSoftwareArchivePackage SSAP)
DpAtEditSSAPFileListGuiNB(DsNsSceinceSoftwareArchivePackage SSAP, RWCString
Filename, EctInt Position)
~DpAtEditSSAPFileListGuiNB()
FileInput(RWCString Filename, EctInt Position)
AddSSAPFile(RWCString Filename, RWCString Path, EctInt Display)
DeleteSSAPFile(RWCString Filename, EctInt Display)
RetrieveSSAPFile(RWCString Filename)
ListSSAPFiles()
ReplaceSSAPFile(RWCString FileToReplace, RWCString ReplaceWith, RWCString Path,
EctInt Display)

mySSAPList
myCurrentSSAP
mySSAPFilters
mySSAP

DpAtSSAPGuiNB()
DpAtSSAPGuiNB(RWCString Filename)
~DpAtSSAPGuiNB()
DeleteSSAP(RWCString SSAPName, EctInt Display)
CreateSSAP(RWCString SSAPName, EctInt Display)
EditSSAPFiles(RWCString Filename, EctInt Position)
EditSSAPMetadata(RWCString Filename, EctInt Position)
EditSSAPFiles()
EditSSAPMetadata()
FileInput(RWCString Filename)
SetSSAPFilters(structure GUIFIlters)
ListSSAPs()
SubmitSSAP(RWCString SSAPName, EctInt Display)
GetSSAP(RWCString SSAPName)

myCurrentPosition
mySSAPMetaData

$DpAtEditSSAPMetaDataGuiNB(RWCString Metadata)
DpAtEditSSAPMetaDataGuiNB(RWCString Metadata, RWCString Filename, EctInt
Position)
~DpAtEditSSAPMetaDataGuiNB()
FileInput(RWCString Filename, EctInt Position)
DisplaySSAPMetaData()
UpdateSSAPMetaData(RWCString Metaparameter, RWCString Metavalue, EctInt Display)
SearchSSAPMetaData(RWCString Metavalue, EctInt Display)
SearchSSAPMetaData(RWCString Metaparameter, EctInt Display)

muUserID
AccessLog
myAccess

DpAtAccessNB()
~DpAtAccessNB()
RecordUpdate(RWCString Action, RWCString SSAPName)
UpdateAccess(RWCString Action)
CheckAccess(RWCString Action)

[Boundary]

Offpage

[DISTR OBJ]Offpage
<RWVector>

Offpage

Offpage

Offpage

Offpage

 - : DsNsScienceSoftwareArchivePackage
 - : structure
 - : EctInt

 + : EctVoid
 + : EctInt

 + : EctVoid
 - : EctInt
 + : EctInt
 + : EctInt
 + : EctInt
 - : EctVoid

+ : EctInt

 - : structure
 - : EctInt
 - : structure
 - : DsNsSceinceSoftwareArchivePackage

 + : EctVoid
 + : EctInt
 + : EctVoid
 + : EctInt
 + : EctInt
 + : EctInt
 + : EctInt
 + : EctInt
 + : EctInt
 - : EctInt
 + : EctVoid
 - : EctVoid
 + : EctInt
 - : EctVoid

 - : EctInt
 - : file

 + : EctVoid
 + : EctInt

 + : EctVoid
 - : EctInt
 - : EctVoid
 + : EctInt
 + : EctInt

+ : EctInt

 - : RWCString
 - : RWCString
 - : Structure

 + : EctVoid
 + : EctVoid
 + : EctVoid
 + : EctVoid
 + : EctInt

Input

Executes

Executes

Create/Set
Callback

Create/Submit

Create/Set Category/
SetServiceName

Create/Insert

Create/SetParameter

Query

6-10 305-CD-027-002

6.3.3 PGE Registration GUI View

This section gives the object model for the PGE Registration GUI. This GUI is used by the DAAC
operator(s) to create the Profile for a new PGE, and to view and alter an existing PGE Profile in
the PDPS database. The PGE Registration GUI allows the operator to alter/create the basic
definition of a PGE in the PDPS database (including resource requirements and performance
statistics) and creates the other GUIs (also shown on the diagram) that allow for the creation/
altering of PGE user parameters, PGE inputs and outputs, and PGE activation rule definition.

Figure 6.3-3 shows the PGE Registration GUI object model.

6-11
305-C

D
-027-002

Figure 6.3-3. PGE Registration Object Model

DpAtPgeRegistationGui

DpAtPGERegistrationFile

PlPGEProfile

DpAtPgeUserParameters

DpAtPgeDataTypes

DpAtPgeActivationRuleB

PlPGE

PlPerformance

PlResourceRequirement

PlUserParameters

PlDataTypeB

PlOutputYield

PlDataTypeReqB

PlAlternate

PlDataScheduled PlTimeScheduled PlOrbitScheduledNB PlTileScheduledNB

PlOrbitModelNB

PgeProfileID
UserParameters

DpAtPgeUserParameters(EctInt PgeProfileID)
DpAtPgeUserParameters(EctInt PgeProfileID, RWCString Filename, EctInt Position)
~DpAtPgeUserParameters()
FileInput(RWCString Filename, EctInt Position)
ReadFromDatabase()
SubmitToDatabase()
AddNewParameter(RWCString Parameter, RWCString Value, EctInt Display)
ModifyParameter(RWCString Parameter, RWCString Value, EctInt Display)
DeleteParameter(RWCString Parameter, EctInt Display)
SearchForParameter(RWCString Parameter, EctInt Display)
DisplayParameters()

PGEOutputs
PGEInputs
PGEProfileID

DpAtPgeDataTypes(EctInt PGEProfileID)
DpAtPgeDataTypes(EctInt PGEprofileID, RWCString Filename, EctInt Position)
~DpAtPgeDataTypes()
FileInput(RWCString Filename, EctInt Position)
ReadFromDatabase()
SubmitToDatabase()
CreateNewDataType(RWCString Filename, EctInt Display)
SelectNewInput(PlDataTypeB Input, EctInt Display)
SelectNewOutput(PlDataTypeB Output, EctInt Display)
DeleteInput(PlDataTypeB Input, EctInt Display)
DeleteOutput(PlDataTypeB Output, EctInt)
DisplayDataTypes()
DisplayPgeOutputs()
DisplayPgeInputs()

PlCluster

PlTile

DataScheduled
TimeScheduled
OrbitScheduled
TileScheduled
OrbitModel
PlClusterList
PGEProfileID
PGEActivationType

DpAtPgeActivationRule(EctInt PGEProfileID)
DpAtPgeActivationRule(EctInt PGEProfileID, RWCString Filename, EctInt Position)
~DpAtPgeActivationRule()
FileInput(RWCString Filename, EctInt Position)
SetPGEActivationType(enum PGEActivationType)
ReadFromDatabase()
SubmitToDatabase()
UpdateActRuleAttr(RWCString Attribute, RWCString Value, EctInt Display)
UpdateOrbitModel(RWCString Attribute, RWCString Value, EctInt Display)
UpdateClusters(RWCString Attribute, RWCString Value, EctInt Display)
DisplayOrbitModel()
DisplayTiles()
DisplayActRuleAttr()

myPerformance
myResourceUse
PGEDefinition
myPerformanceFile
myResourceFile
myPGEID
myPGEVersion
myPGEName

DpAtPgeRegistrationGui()
DpAtPgeRegistrationGui(RWCString Filename)
~DpAtPgeRegistrationGui()
FileInput(RWCString Filename)
SetPGEName(RWCString PGEName, EctInt Display)
SetPGEVersion(RWCString PGEVersion, EctInt Display)
ChangeResourceParameter(RWCString Parameter, RWCString Value, EctInt Display)
ChangePerformanceParameter(RWCString Parameter, RWCString Value, EctInt Display)
ChangePGEDefiniton(RWCString Parameter, RWCString Value, EctInt Display)
DisplayPGE()
ReadfromDatabase()
SubmittoDatabase()
ReadPerformanceFile(RWCString Filename, EctInt Display)
ReadResourceFile(RWCString Filename, EctInt Display)
UpdateUserParameters(RWCString Filename, EctInt Position)
UpdateDataTypes(RWCString Filename, EctInt Position)
UpdateActivationRules(RWCString Filename, EctInt Position)
ListResource()
ListPerformance()

Offpage

Offpage

Offpage

Offpage

Offpage

Offpage

[Public]

Offpage[PERSISTENT CLASS]

Offpage

Offpage

Offpage

Offpage Offpage Offpage Offpage

Offpage

 - : EctInt
 - : PlUserParameters

 + : EctVoid
 + : EctInt
 + : EctVoid
 - : EctInt
 - : EctInt
 + : EctInt
 + : EctInt
 + : EctInt
 + : EctInt
 + : Ectint
 -

 - : List of PlDataTypeB
 - : List of PlDataTypeB
 - : EctInt

 +
 + : EctInt
 +
 - : EctInt
 -
 +
 +
 +
 +
 +
 +
 -
 -
 -

Offpage

Offpage

 - : PlDataScheduled
 - : PlTimeScheduled
 - : PlOrbitScheduled
 - : PlTileScheduled
 - : PlOrbitModel
 - : List of PlClusters
 - : EctInt
 - : enum

 +
 + : Ectint
 +
 -

 -
 +
 +
 +
 +
 +
 +
 -

 - : PlPerformance
 - : PlResourceRequirement
 - : PlPGE
 - : RWCString
 - : RWCString
 - : EctInt
 - : EctFloat
 - : RWCString

 + : EctVoid
 + : EctInt
 +
 - : EctInt
 +
 +
 +
 +
 +
 +
 - : EctInt
 + : EctInt
 +
 +
 + : Ectint
 + : EctInt
 + : EctInt
 + : EctVoid
 + : EctVoid

Input

Creates/Deletes/
Updates

Create/Delete/
Modify

Create/Delete/
Modify

Create/Delete/
Modify

Create/Delete/
Modify

is created/deleted/
modified by

Creates

Creates

creates

Creates/Deletes/
Updates

Creates/Deletes/
Updates

Creates/Deletes/
Updates

is created/deleted/
modified by

is created/deleted/
modified by

Create/Delete/
Modify

Create/Delete/
Update

Create/Delete/
Modify

Create/Delete/
Modify

Create/Modify

6-12 305-CD-027-002

6.3.4 Manual Staging and Destaging Tool View

This section gives the object model for the manual staging and destaging GUI. This GUI/tool is
used by the DAAC operator(s) to acquire or insert data to and from the Data Server during the
Algorithm Integration and Test process.

Figure 6.3-4 shows the algorithm integration and test support for data sever I/F object model.

6-13 305-CD-027-002

Figure 6.3-4. Manual Staging and Destaging Interface

DsClESDTReferenceCollector <RWVector>

DsClRequest

DsClCommand

DpPrAITManualIF

myManualIFWindow

Stage(Item:GlUR)
Destage(Item:GlUR)

[DISTR OBJ]
Offpage

Offpage

Offpage

 -

 +
 +

Submits Request Through

Builds

6-14 305-CD-027-002

6.4 CSCI Class Descriptions

6.4.1 Analysisenvironment Class

Parent Class:Not Applicable
Public:No
Distributed Object:No
Purpose and Description:
Run analysis environment. For Sun machines, SPARCWorks; for SGI machines,
CASEVision. THIS IS NOT A CLASS. It is callable from the Unix command line.

Attributes:

None

Operations:

None

Associations:

The Analysisenvironment class has associations with the following classes:
Class: MgrGui SpawnProgram

6.4.2 CMscript Class

Parent Class:Not Applicable
Public:No
Distributed Object:No
Purpose and Description:
Script for use with CM tool (ClearCase) THIS IS NOT A CLASS. It is callable from the
Unix command line.

Attributes:

None

Operations:

None

6-15 305-CD-027-002

Associations:

The CMscript class has associations with the following classes:
Class: MgrGui RunProgram

6.4.3 DpAtAccessNB Class

Parent Class:Not Applicable
Public:No
Distributed Object:No
Purpose and Description:
This class provides access control and an access log for the current user of the SSAP GUI.
It provides routines to check the access given to a user, and allows for creation of and
updates to the access log.

Attributes:

AccessLog - This is the name + path of the log file created for this userid. It is created/
updated by RecordUpdate.
Data Type:RWCString
Privilege:Private
Default Value:

muUserID - This is the user id of the current user. It will be retrieved via an MSS interface.
Data Type:RWCString
Privilege:Private
Default Value:

myAccess - This is the access permissions for the current user. It is a structure made up of
a list of Actions (Create an SSAP, Delete an SSAP, Add File to SSAP File List, etc...) and
whether the user is permitted to perform them.
Data Type:Structure
Privilege:Private
Default Value:

Operations:

CheckAccess - This method returns the access permission of the user for the specified
Action. The return is treated as a boolean.
Arguments:RWCString Action
Return Type:EctInt
Privilege:Public

6-16 305-CD-027-002

PDL:

 // Call MSS routine to get the current users UserID.
 // Return the access in myAccess for the Action.

DpAtAccessNB - This is the constructor of the class.
Arguments:
Return Type:EctVoid
Privilege:Public
PDL: // Call MSS routine to get the current users UserID.
 // Create a myAccess structure and initalize all permissions
 // to 0 (not allowed).

RecordUpdate - This routine updates the AccessLog file with the specified Action and the
name of being maniuplated. If the access log does not exist, this routine creates it.
Arguments:RWCString Action, RWCString SSAPName
Return Type:EctVoid
Privilege:Public
PDL:
 // Call MSS routine to get the current users UserID.
 if (AccessLog = null)
 {
 // Create AccessLog file.
 }

 // Add the current action and SSAPName to the file.

UpdateAccess - This method updates the user's access permission for the specified Action.
It reverses the permission that existed before the call.
Arguments:RWCString Action
Return Type:EctVoid
Privilege:Public
PDL:
 // Call MSS routine to get the current users UserID.
 // Toggle the Access for the entry in myAccess specified by Action.

~DpAtAccessNB - This is the destructor for the class.
Arguments:
Return Type:EctVoid
Privilege:Public
PDL:
 // Call MSS routine to get the current users UserID.
 // Delete the myAccess structure.

6-17 305-CD-027-002

Associations:
The DpAtAccessNB class has associations with the following classes:
Class: DpAtSSAPGuiNB Query

6.4.4 DpAtEditSSAPFileListGuiNB Class

Parent Class:Not Applicable
Public:No
Distributed Object:No
Purpose and Description:
This class provides a GUI definition for adding & deleting files from the specified SSAP.
It also allows for the extraction of the chosen file from the SSAP to the local directory.

Attributes:

mySSAP - This is the Science Software Archive Package from which the file list is
extracted.
Data Type:DsNsScienceSoftwareArchivePackage
Privilege:Private
Default Value:

mySSAPFile - This is the currently selected file in the SSAP. It is an index into the list of
files in the SSAP.
Data Type:EctInt
Privilege:Private
Default Value:

mySSAPFiles - This is a list of the files in a SSAP, grouped according to types and
functions.
Data Type:structure
Privilege:Private
Default Value:

Operations:

$DpAtEditSSAPFileListGuiNB - This is the constructor for the class. It creates the Edit
SSAP File List GUI, and creates myFileList from the provided SSAP.
Arguments:DsNsScienceSoftwareArchivePackage SSAP
Return Type:EctVoid
Privilege:Public
PDL:
 // Create the EditSSAPFileListGui through

6-18 305-CD-027-002

 // Builder Xcessory generated code.

 // mySSAP is initalized with the value passed in.
 mySSAP=SSAP;

 // mySSAPFiles is created from the SSAP record passed in.
 // mySSAPFile is initialized to point to the first file in the
 // list.

 // ListSSAPFiles is called to list the files in the SSAP to the screen.
 ListSSAPFiles ();

AddSSAPFile - This method adds the file specified by Filename and Path to the SSAP. If
Display is true, the change is displayed to the screen by calling ListSSAPFiles
Arguments:RWCString Filename, RWCString Path, EctInt Display
Return Type:EctInt
Privilege:Public
PDL:
 // mySSAPFiles is searched for the Filename to be added.

 if (the Filename does not already exist)
 {
 // Call CheckAccess to verify that the user is permitted to
 // add files to an SSAP. If the user does not have permission
 // to add files, and Display is true, a message is sent to the
 // screen to indicate that the action is not allowed.

 // The Filename specified is added to mySSAPFiles.

 // The file specified by Filename and Path is inserted into
 // mySSAP.

 // RecordUpdate is called to update the log to the fact that
 // the current user added a file to the SSAP.
 }
 else
 {
 if Display

 // The user is prompted as to if the user wants to overwrite
 // the file.

 if (user accepts overwrite)
 {
 // Call CheckAccess to verify that the user is permitted to

6-19 305-CD-027-002

 // replace files in an SSAP. If the user does not have permission
 // to replace files, and Display is true, a message is sent to the
 // screen to indicate that the action is not allowed.

 // The file specified by Filename and Path is inserted into
 // mySSAP over the old version of the file.

 // RecordUpdate is called to update the log to the fact that
 // the current user replaced a file to the SSAP.
 }
 }

 if Display
 // ListSSAPFiles is called to display the list of files in the SSAP.
 ListSSAPFiles ();

DeleteSSAPFile - This method deletes the file specified by Filename from the SSAP. If
Display is true, the change is displayed to the user via a call to ListSSAPFiles.
Arguments:RWCString Filename, EctInt Display
Return Type:EctInt
Privilege:Public
PDL:
 // mySSAPFiles is searched for the specified Filename.

 if (Filename found)
 {

 // Call CheckAccess to verify that the user is permitted to
 // delete files from an SSAP. If the user does not have permission
 // to delete files, and Display is true, a message is sent to the
 // screen to indicate that the action is not allowed.

 // The Filename specified is deleted from mySSAPFiles.

 // The file specified by Filename is deleted from
 // mySSAP.

 // RecordUpdate is called to update the log to the fact that
 // the current user deleted a file from the SSAP.

 if Display
 // ListSSAPFiles is called to display the list of files in the SSAP.
 ListSSAPFiles ();
 }

6-20 305-CD-027-002

DpAtEditSSAPFileListGuiNB - This constructor takes a Filename and Position as inputs
in addition to the SSAP to be modified. It calls routines within this class to parse the input
file starting at the specified position, and make any modifications to the file list specified
in the input file.
Arguments:DsNsSceinceSoftwareArchivePackage SSAP, RWCString Filename, EctInt
Position
Return Type:EctInt
Privilege:Public
PDL:
 // mySSAP is initalized with the value passed in.
 mySSAP=SSAP;

 // mySSAPFiles is created from the SSAP record passed in.
 // mySSAPFile is initialized to point to the first file in the
 // list.

 // FileInput is called to parse the input file from position
 // for file list updates.
 FileInput (Filename, Position);

FileInput - This method parses the file defined by Filename from the Position specified. It
calls routines within this class to perform the SSAP file list changes defined in the file.
Arguments:RWCString Filename, EctInt Position
Return Type:EctInt
Privilege:Private
PDL:
 // Open the file specified by Filename.

 while (not at Position in the file)
 // Read the next line in the file.

 while (there is more to read in the file)
 {
 // Parse each line in the file.
 switch
 {
 // For each type of file input command, call the
 // appropriate routine within this class to
 // process it.

 if (bad input from file)
 // Exit loop.

 if (bad return code from one of the called routines)

6-21 305-CD-027-002

 // Exit Loop.

 if (input command is for Metadata or SSAP)
 // Exit loop.
 }
 }

 // Close the file.
 // return status(if negative) or position in the file.

ListSSAPFiles - This routine displays the list of files in the SSAP on the GUI.
Arguments:
Return Type:EctVoid
Privilege:Private
PDL: while (not done with the list)
 {
 // Display the name of the file in position i of
 // mySSAPFiles.
 }

ReplaceSSAPFile - This method replaces the file in the SSAP defined by FileToReplace
with the file defined by ReplaceWith and Path. If Display is true, the change is displayed
to the GUI via a call to ListSSAPFiles.
Arguments:RWCString FileToReplace, RWCString ReplaceWith, RWCString Path,
EctInt Display
Return Type:EctInt
Privilege:Public
PDL:
 // Open the file specified by Filename.

 while (not at Position in the file)
 // Read the next line in the file.

 while (there is more to read in the file)
 {
 // Parse each line in the file.
 switch
 {
 // For each type of file input command, call the
 // appropriate routine within this class to
 // process it.

 if (bad input from file)

6-22 305-CD-027-002

 // Exit loop.

 if (bad return code from one of the called routines)
 // Exit Loop.

 if (input command is for Metadata or SSAP)
 // Exit loop.
 }
 }

 // Close the file.
 // return status(if negative) or position in the file.

RetrieveSSAPFile - This method retrieves the file specified by Filename from the SSAP
and places it in the local directory.
Arguments:RWCString Filename
Return Type:EctInt
Privilege:Public
PDL:
 // Initalize Data Server objects.
 // Create a Data Server command to ACQUIRE the file specified
 // by Filename. Send the command to the Data Server.
 // The file is placed in the local directory.

~DpAtEditSSAPFileListGuiNB - This is the destructor for the class. It removes the GUI
from the display.
Arguments:
Return Type:EctVoid
Privilege:Public
PDL:
 // Remove the EditSSAPFileListGui from the
 // display using Builder Xcessory generated code.

Associations:
The DpAtEditSSAPFileListGuiNB class has associations with the following classes:
Class: DpAtSSAPGuiNB Executes

6-23 305-CD-027-002

6.4.5 DpAtEditSSAPMetaDataGuiNB Class

Parent Class:Not Applicable
Public:No
Distributed Object:No
Purpose and Description:
This class defines the GUI that provides the ability to update the metadata of the selected
SSAP. It displays the metadata file passed as an argument to the constructor, and provides
the capability to update and search the SSAP metadata.

Attributes:

myCurrentPosition - This is the current position in the metadata. It is set by the search
methods, as well as moving the cursor on the GUI.
Data Type:EctInt
Privilege:Private
Default Value:

mySSAPMetaData - This is the metadata file associated with the SSAP. Note that all
metadata is in parameter=value format, so the file has a listing of each metadata field with
its corresponding value.
Data Type:file
Privilege:Private
Default Value:

Operations:

$DpAtEditSSAPMetaDataGuiNB - This is the constructor for the class. It creates the
Edit SSAP Metadata GUI, and displays the SSAP's metadata via a call to
DisplaySSAPMetaData.
Arguments:RWCString Metadata
Return Type:EctVoid
Privilege:Public
PDL:
 // Create the EditSSAPMetaDataGui through
 // Builder Xcessory generated code.

 // mySSAPMetaData is initalized with the value passed in.
 mySSAPMetaData=Metadata;

 // DisplaySSAPMetadata called to show the metadata
 // on the user's screen.

6-24 305-CD-027-002

 DisplaySSAPMetadata ();

DisplaySSAPMetaData - This method displays the metadata to the screen in the
parameter=value format.
Arguments:
Return Type:EctVoid
Privilege:Private
PDL:
 while (not end of metadata)
 {
 // Display metadata in parameter=value format
 }

DpAtEditSSAPMetaDataGuiNB - This constructor takes in a Filename and Position in
addition to the SSAP metatdata and calls FileInput to parse the specified file.
Arguments:RWCString Metadata, RWCString Filename, EctInt Position
Return Type:EctInt
Privilege:Public
PDL:
 // mySSAPMetaData is initalized with the value passed in.
 mySSAPMetaData=Metadata;

 // FileInput is called to continue parsing the input file
 // for metadata updates.
 FileInput (Filename, Position);

FileInput - This method parses the file specified by Filename from the argument Position.
It calls the routines of this class to make the updates to the metadata defined in the file.
Arguments:RWCString Filename, EctInt Position
Return Type:EctInt
Privilege:Private
PDL:
 // Open the file specified by Filename.

 while (not to Position in the file)
 // Read the next line.

 while (there is more to read in the file)
 {
 // Parse the next line in the file.
 switch
 {
 // For each type of file input command, call the

6-25 305-CD-027-002

 // appropriate routine within this class to
 // process it.

 if (bad input from file)
 // Exit loop.

 if (bad return code from called routine)
 // Exit loop.

 if (input command is of type FileList or SSAP)
 // Exit loop.
 }
 }

 // Close the file.
 // return current position or "bad" status.

SearchSSAPMetaData - This method searches the metadata for the specified value. If
found, it sets myCurrentPosition to the line of the Value. If Display is true it also sets the
GUI to the line where the Value was found.
Arguments:RWCString Metavalue, EctInt Display
Return Type:EctInt
Privilege:Public
PDL:
 while (not end of metadata)
 {
 if (current metadata value = Metavalue)
 // Set myCurrentPosition to the position of the
 // found value.
 if Display
 // Highlight found metadata line on the display.
 }

 if (value not found)
 // Set myCurrentPosition to beyond the last entry in the file.

SearchSSAPMetaData - This method searches the metadata for the specified Parameter.
if found, it sets myCurrentPosition to the location of the Parameter in the file. If Display
is true, it also sets the GUI to the found Parameter.
Arguments:RWCString Metaparameter, EctInt Display
Return Type:EctInt
Privilege:Public
PDL:

6-26 305-CD-027-002

 while (not end of metadata)
 {
 if (current metadata parameter = Metaparameter)
 // Set myCurrentPosition to the position of the
 // found parameter.
 if Display
 // Highlight found metadata line on the display.
 }

 if (value not found)
 // Set myCurrentPosition to beyond the last entry in the file.

UpdateSSAPMetaData - This routine updates the specified Metaparameter with the
specified Metavalue. If the Metaparameter cannot be found, it queries the user if he/she
wishes to add the parameter to the file. If Display is true, DisplaySSAPMetaData is called
to display the changes.
Arguments:RWCString Metaparameter, RWCString Metavalue, EctInt Display
Return Type:EctInt
Privilege:Public
PDL:
 if (metadata parameter at myCurrentPosition = Metaparamter)
 {
 // Call CheckAccess to detemine if the user has access to update
 // the metadata of the SSAP. If the return indicates that the
 // updating of metadata is not permitted, and Display is true,
 // a message is displayed indicating that the selected action
 // is not allowed.

 // Set the value at myCurrentPosition to Metavalue.

 // Call RecordUpdate to log the fact that the user updated
 // the metadata of the SSAP.
 }
 else
 {
 // Call SearchSSAPMetaData to search for the specified parameter.
 SearchSSAPMetaData (Metaparameter, Display);

 if (metadata parameter at myCurrentPosition = Metaparamter)
 {
 // Call CheckAccess to detemine if the user has access to update
 // the metadata of the SSAP. If the return indicates that the
 // updating of metadata is not permitted, and Display is true,
 // a message is displayed indicating that the selected action
 // is not allowed.

6-27 305-CD-027-002

 // Set the value at myCurrentPosition to Metavalue.

 // Call RecordUpdate to log the fact that the user updated
 // the metadata of the SSAP.
 }
 else
 {
 // Call CheckAccess to detemine if the user has access to update
 // the metadata of the SSAP. If the return indicates that the
 // updating of metadata is not permitted, and Display is true,
 // a message is displayed indicating that the selected action
 // is not allowed.

 // Add Metaparamter and Metavalue at myCurrentPosition
 // which is the end of the Metadata file.

 // Call RecordUpdate to log the fact that the user updated
 // the metadata of the SSAP.
 }
 }

~DpAtEditSSAPMetaDataGuiNB - This is the destructor for the class. It is called when
the GUI is exited or when the File Input is complete.
Arguments:
Return Type:EctVoid
Privilege:Public
PDL:
 // Remove the EditSSAPMetaDataGui from the
 // display using Builder Xcessory generated code.

Associations:
The DpAtEditSSAPMetaDataGuiNB class has associations with the following classes:
Class: DpAtSSAPGuiNB Executes

6.4.6 DpAtMgr Class

Parent Class:Not Applicable
Public:No
Distributed Object:No
Purpose and Description:
General processor of AIT Manager Kicks off COTS, custom and instrument-specific

6-28 305-CD-027-002

scripts Calls checklist, log, other processors

Attributes:

myHelpFIleLogicals - This is the pointer to the information for the help menu.
Data Type:PGSt_PC_Logical*
Privilege:Private
Default Value:

Operations:

Checklist - Checklist processor Called by DpAtMgr.Processor() Input:
DpAtMgrChecklistData instance
Arguments:DpAtMgrChecklistData,EcTBoolean*
Return Type:EcTInt
Privilege:Public

File - File menu processor Called by DpAtMgr.Processor() Input: menuSelection, ...
Arguments:EcTInt*
Return Type:EcTInt
Privilege:Public

Help - Help menu processor
Arguments:EcTInt*
Return Type:EcTInt
Privilege:Public

Log - Log processor Called by DpAtMgr.Processor()
Arguments:DpAtMgrLogData,DpAtMgrChecklistData

Options - Options menu processor Called by DpAtMgr.Processor() Input: menuSelection,
...
Arguments:EcTInt*
Return Type:EcTInt
Privilege:Public

Processor - Main processor for data returned by GUI
Arguments:DpAtMgrGuiActivityData, DpAtMgrChecklistData, DpAtMgrLogData
Return Type:EcTInt
Privilege:Public

6-29 305-CD-027-002

Associations:

The DpAtMgr class has associations with the following classes:
Class: DpAtMgrChecklistData
GetActivityFlagSaveToFileChangeItemStateCurrentIndexIsChecked
Class: DpAtMgrGuiActivityData
GetSelectedAreaGetMenuSelectionPutActivityRequestGetProgramReturnValue
Class: DpAtMgrCom Processorctor
Class: DpAtMgrLogData
PutActivityFlagGetActivityFlagWriteLogEntryReadLogEntryFindLogEntryGuiEditLog
Annotation

6.4.7 DpAtMgrBinaryFileEnvironmentGui Class

Parent Class:Not Applicable
Public:No
Distributed Object:No
Purpose and Description:
This class represents the definition of the Binary File Environment GUI.

Attributes:

None

Operations:

None

Associations:

The DpAtMgrBinaryFileEnvironmentGui class has associations with the following classes:
Class: DpAtMgrCheckPcfGui executes
Class: DpAtMgrCheckProhibFuncGui executes
Class: MgrGui executes

6.4.8 DpAtMgrCheckHdfFile Class

Parent Class:Not Applicable
Public:No

6-30 305-CD-027-002

Distributed Object:No
Purpose and Description:
IDL program to compare two HDF files, and also display metadata. THIS IS NOT A
CLASS. It is callable from the Unix command line.

Attributes:

None

Operations:

None

Associations:

The DpAtMgrCheckHdfFile class has associations with the following classes:
Class: MgrGui RunProgram

6.4.9 DpAtMgrCheckPcfGui Class

Parent Class:Not Applicable
Public:No
Distributed Object:No
Purpose and Description:
DpAtMgrCheckPcfGui is the GUI for checking Process Control Files (PCFs) for valid
syntax and required contents.

Attributes:

None

Operations:

None

Associations:

The DpAtMgrCheckPcfGui class has associations with the following classes:
Class: DpAtMgrBinaryFileEnvironmentGui executes

6-31 305-CD-027-002

6.4.10 DpAtMgrCheckProhibFuncCom Class

Parent Class:Not Applicable
Public:No
Distributed Object:No
Purpose and Description:
Prohibited function checker, Unix command line version

Attributes:

None

Operations:

None

Associations:

The DpAtMgrCheckProhibFuncCom class has associations with the following classes:
Class: DpAtMgrCheckProhibFuncGui
Class: DpAtMgrProhibFuncListData

6.4.11 DpAtMgrCheckProhibFuncGui Class

Parent Class:Not Applicable
Public:No
Distributed Object:No
Purpose and Description:
Input GUI for prohibited function checker

Attributes:

None

Operations:

6-32 305-CD-027-002

None

Associations:

The DpAtMgrCheckProhibFuncGui class has associations with the following classes:
Class: DpAtMgrCheckProhibFuncCom
Class: DpAtMgrBinaryFileEnvironmentGui executes

6.4.12 DpAtMgrChecklistData Class

Parent Class:Not Applicable
Public:No
Distributed Object:No
Purpose and Description:
Stores data for AIT Manager checklist

Attributes:

myActivityFlag - Flag to indicate activity received from GUI =0, No activity =1,
myCurrentIndex changed state selected/not selected =2, "Save Checklist" button pushed
Data Type:EctInt
Privilege:Private
Default Value:

myCurrentIndex - Current index of checklist item If myActivityFlag=1 received from
GUI, this item changed state from/to checked/unchecked
Data Type:Ectint
Privilege:Private
Default Value:

myItemIds - Array of checklist identifiers, numbered consecutively One for each checklist
item
Data Type:EctInt
Privilege:Private
Default Value:

myItemIsChecked - Array of states for checklist items =EcDFalse, item is not checked
=EcDTrue, item is checked
Data Type:EcInt
Privilege:Private
Default Value:

6-33 305-CD-027-002

myLabels - Array of checklist labels to display on GUI screen One label for each checklist
item
Data Type:RWCString
Privilege:Private
Default Value:

myNumItems - Number of items for this checklist
Data Type:EctInt
Privilege:Private
Default Value:

Operations:

$DpAtMgrChecklistData - Constructor for class DpAtMgrChecklist data Reads
checklist data from file
Arguments:
Return Type:Void
Privilege:Public

ChangeItemState - Changes state myItemIsChecked[myCurrentIndex] from/to
checked/unchecked
Arguments:
Return Type:Void
Privilege:Public

CurrentIndexIsChecked - Returns EcDTrue if myCurrentIndex is checked; EcDFalse if
not
Arguments:
Return Type:Void
Privilege:Public

GetActivityFlag - Get value of myActivityFlag
Arguments:
Return Type:Void
Privilege:Public

GetCurrentIndex - Gets index (ID) of current checklist item
Arguments:
Return Type:Void
Privilege:Public

PutActivityFlag - Set value of myActivityFlag

6-34 305-CD-027-002

Arguments:EcTInt
Return Type:Void
Privilege:Public

PutCurrentIndex - Sets index (ID) of current checklist item
Arguments:EcTInt
Return Type:Void
Privilege:Public

SaveToFile - Saves checklist data to a file
Arguments:
Return Type:Void
Privilege:Public

Associations:

The DpAtMgrChecklistData class has associations with the following classes:
Class: DpAtMgr GetActivityFlagSaveToFileChangeItemStateCurrentIndexIsChecked
Class: DpAtMgrInstrConfigData GetChecklistFileLogical
Class: MgrGui PutActivityFlagPutCurrentIndex
Class: DpAtMgrCom ctor

6.4.13 DpAtMgrCmdLineData Class

Parent Class:Not Applicable
Public:No
Distributed Object:No
Purpose and Description:
Stores all data which may be specified on the initial AIT Manager command line.

Attributes:

myInstrConfigLogical - Logical ID in Process Control File (PCF) for instrument
configuration data for this AIT Manager session
Data Type:EcTInt
Privilege:Private
Default Value:

myInstrumentName - Name of instrument for this AIT Manager session
Data Type:RWCString

6-35 305-CD-027-002

Privilege:Private
Default Value:

myStaticMotifRcFileLogical - PCF file logical for user-editable static Motif menu data
for this AIT Manager session *****This file is in the same format as the Motif resources
file It contains all menu labels, sub-menu labels, etc. *except* the Run menu data, plus any
user preferences such as colrs, fonts, etc.
Data Type:RWCString
Privilege:Private
Default Value:

Operations:

$DpAtMgrCmdLineData - Constructor for DpAtMgrCmdLineData
Arguments:
Return Type:Void
Privilege:Public

GetInstrConfigLogical - Gets instrument configuration file logical ID for PCF
Arguments:
Return Type:Void
Privilege:Public

GetInstrumentName - Gets instrument name
Arguments:
Return Type:Void
Privilege:Public

GetStaticMotifRcFileLogical - Gets static motif resources file logical for PCF
Arguments:
Return Type:Void
Privilege:Public

PutInstrConfigLogical - This outputs the value of the attribute myInstrConfigLogical.
Arguments:PGSt_PC_Logical
Return Type:Void
Privilege:Public

PutInstrumentName - Puts instrument name into storage
Arguments:EcTChar*
Return Type:Void
Privilege:Public

6-36 305-CD-027-002

PutStaticMotifRcFileLogical - This method outputs the value in the attribute my
StaticMotifRcFileLogical.
Arguments:PGSt_PC_Logical
Return Type:Void
Privilege:Public

WriteToFile - Writes command line configuration for this AIT Manager session to file
Arguments:
Return Type:Void
Privilege:Public

Associations:

The DpAtMgrCmdLineData class has associations with the following classes:
Class: DpAtMgrInstrConfigData GetInstrConfigLogicalGetStaticMotifRcFileLogical
Class: DpAtMgrCom ctor

6.4.14 DpAtMgrCom Class

Parent Class:Not Applicable
Public:No
Distributed Object:No
Purpose and Description:
Main program module for invoking AIT Manager. THIS IS NOT A CLASS. It is the main
program, callable from the Unix command line.

Attributes:

None

Operations:

None

Associations:

The DpAtMgrCom class has associations with the following classes:
Class: MgrGui Processorctor()
Class: DpAtMgr Processorctor

6-37 305-CD-027-002

Class: DpAtMgrChecklistData ctor
Class: DpAtMgrCmdLineData ctor
Class: DpAtMgrGuiActivityData ctor
Class: DpAtMgrInstrConfigData ctor
Class: DpAtMgrLogData ctor

6.4.15 DpAtMgrGuiActivityData Class

Parent Class:Not Applicable
Public:No
Distributed Object:No
Purpose and Description:
This class is the interface between the GUI/Motif code and the external code. GUI
callbacks are accesses of this class's data through its operations.

Attributes:

myActivityRequest - GUI activity requested by calling module =0, take no action =1,
redisplay entire GUI =2, redisplay checklist only =3, redisplay log only =4, destroy entire
GUI =5, edit current log entry
Data Type:EcTint
Privilege:Private
Default Value:

myMenuSelection - Index of item selected on menus myMenuSelection[0] = main menu
item index myMenuSelection[0]=0, File menu myMenuSelection[0]=1, Options menu
myMenuSelection[0]=2, Tools menu myMenuSelection[0]=3, Run menu
myMenuSelection[0]=4, Utilities menu myMenuSelection[0]=5, Help menu
myMenuSelection[1] = sub menu item index myMenuSelection[1]=0, 1st sub menu item
etc myMenuSelection[2] = sub sub menu item index myMenuSelection[2]=0, 1st sub sub
menu item
Data Type:array of EcTInt
Privilege:Private
Default Value:

myProgramReturnValue - Return value from program selected from Tools, Run or Help
menu
Data Type:EcTInt
Privilege:Private
Default Value:

mySelectedArea - Portion of GUI that the user clicked on =0, no selection =1, main menu

6-38 305-CD-027-002

=2, checklist =3, log
Data Type:EcTInt
Privilege:Private
Default Value:

myText - Text written by user into GUI Used to annotate log
Data Type:RWCString
Privilege:Private
Default Value:

Operations:

$DpAtMgrGuiActivityData - Constructor for DpAtMgrGuiActivityData
Arguments:
Return Type:Void
Privilege:Public

GetActivityRequest - Get value of myActivityRequest
Arguments:
Return Type:Void
Privilege:Public

GetMenuSelection - Get value of myMenuSelection
Arguments:
Return Type:Void
Privilege:Public

GetProgramReturnValue - Get value of myProgramReturnValue
Arguments:
Return Type:Void
Privilege:Public

GetSelectedArea - Get value of mySelectedArea
Arguments:
Return Type:Void
Privilege:Public

PutActivityRequest - Set value of myActivityRequest
Arguments:EcTInt
Return Type:Void
Privilege:Public

PutMenuSelection - Set value of myMenuSelection

6-39 305-CD-027-002

Arguments:EcTInt*
Return Type:Void
Privilege:Public

PutProgramReturnValue - Set value of myProgramReturnValue
Arguments:EcTInt
Return Type:Void
Privilege:Public

PutSelectedArea - Set value of mySelectedArea
Arguments:EcTInt
Return Type:Void
Privilege:Public

Associations:

The DpAtMgrGuiActivityData class has associations with the following classes:
Class: DpAtMgr
GetSelectedAreaGetMenuSelectionPutActivityRequestGetProgramReturnValue
Class: MgrGui
PutSelectedAreaPutMenuSelectionGetActivityRequestPutProgramReturnValue
Class: DpAtMgrCom ctor

6.4.16 DpAtMgrInstrConfigData Class

Parent Class:Not Applicable
Public:No
Distributed Object:No
Purpose and Description:
Stores instrument-specific configuration data

Attributes:

myChecklistFileLogical - Checklist file PCF logical for this instrument configuration
Data Type:PGSt_PC_Logical
Privilege:Private
Default Value:0

myLogFileLogical - Log file PCF logical for this instrument configuration
Data Type:PGSt_PC_Logical

6-40 305-CD-027-002

Privilege:Private
Default Value:0

myNumScripts - Number of scripts available for this instrument configuration
Data Type:EcTInt
Privilege:Private
Default Value:0

myScriptFileLogicals - Script file PCF logicals for this instrument configuration, one for
each script
Data Type:PGSt_PC_Logical*
Privilege:Private
Default Value:

myScriptLabels - Script labels for this instrument configuration, for display on GUI
menu, one for each script
Data Type:EcTChar**
Privilege:Private
Default Value:

myScriptOptions - Command line options available for this instrument configuration, one
for each script
Data Type:EcTChar**
Privilege:Private
Default Value:

Operations:

$DpAtMgrInstrConfigData - Constructor for DpAtMgrInstrConfigData
Arguments:
Return Type:Void
Privilege:Public

GetChecklistFileLogical - Gets myChecklistFileLogical
Arguments:
Return Type:PGSt_PC_Logical
Privilege:Public

GetLogFileLogical - Gets myLogFileLogical
Arguments:
Return Type:PGSt_PC_Logical
Privilege:Public

6-41 305-CD-027-002

ReadFile - Read an instrument configuration file to set all the private data members of this
class
Arguments:
Return Type:EcTInt
Privilege:Public

WriteMotifRcFile - Reads the static Motif resources file, and writes its data and the Run/
script data to the dynamic Motif resources file
Arguments:
Return Type:EcTInt
Privilege:Public

WriteToFile - Write all private data members of this class to an instrument configuration
file
Arguments:
Return Type:EcTInt
Privilege:Public

Associations:

The DpAtMgrInstrConfigData class has associations with the following classes:
Class: DpAtMgrChecklistData GetChecklistFileLogical
Class: DpAtMgrCmdLineData GetInstrConfigLogicalGetStaticMotifRcFileLogical
Class: DpAtMgrLogData GetLogFileLogical
Class: DpAtMgrCom ctor

6.4.17 DpAtMgrLogData Class

Parent Class:Not Applicable
Public:No
Distributed Object:No
Purpose and Description:
Stores data for AIT Manager instrument-specific log

Attributes:

myActivityFlag - Flag to indicate activity received from GUI =0, No activity =1, Checklist
item was checked =2, "NEXT" button pushed =3, "CANCEL" button pushed =4, "LAST"
button pushed
Data Type:EcTInt

6-42 305-CD-027-002

Privilege:Private
Default Value:0

myAnnotation - Annotation text for this log entry
Data Type:EcTChar*
Privilege:Private
Default Value:

myChecklistIndex - Index of checklist item which generated this log entry
Data Type:EcTInt
Privilege:Private
Default Value:0

myDate - Date of this log entry
Data Type:DpTAtMgrDate
Privilege:Private
Default Value:

myFileHandle - Log file handle for input to read/write functions
Data Type:PGSt_IO_Gen_FileHandle
Privilege:Private
Default Value:

myItemId - Unique log entry ID
Data Type:EcTInt
Privilege:Private
Default Value:0

myTime - Time of this log entry
Data Type:DPTAtMgrTime
Privilege:Private
Default Value:

Operations:

$DpAtMgrLogData - DpAtMgrLogData constructor Reads last entry in log file
Arguments:
Return Type:Void
Privilege:Public

EditLogAnnotation - Edits or creates a log entry annotation is a text editor window
Arguments:
Return Type:EcTInt

6-43 305-CD-027-002

Privilege:Public

FindLogEntryGui - GUI for searching for a text string in the log file entries (not the
annotations)
Arguments:
Return Type:EcTInt
Privilege:Public

GetActivityFlag - Get value of myActivity flag
Arguments:
Return Type:EcTInt
Privilege:Public

PutActivityFlag - This method outputs the value in myActivityFlag.
Arguments:EcTInt
Return Type:EcTInt
Privilege:Public

PutChecklistIndex - Sets value of myChecklistIndex
Arguments:EcTInt
Return Type:Void
Privilege:Public

ReadLogEntry - Read a log entry from the log file
Arguments:EcTInt
Return Type:EcTInt
Privilege:Public

WriteLogEntry - Write a log entry to the log file
Arguments:
Return Type:EcTInt
Privilege:Public

Associations:

The DpAtMgrLogData class has associations with the following classes:
Class: MgrGui
Class: DpAtMgrInstrConfigData GetLogFileLogical
Class: DpAtMgr
PutActivityFlagGetActivityFlagWriteLogEntryReadLogEntryFindLogEntryGuiEditLog
Annotation
Class: DpAtMgrCom ctor

6-44 305-CD-027-002

6.4.18 DpAtMgrProhibFuncListData Class

Parent Class:Not Applicable
Public:No
Distributed Object:No
Purpose and Description:
Stores data for prohibited function checker

Attributes:

myLanguage - Computer language of code to check: C, Fortran 77, Fortran 90 or Ada
Data Type:EcTChar*
Privilege:Private
Default Value:"\0"

myNumProhibFuncs - Number of prohibited functions for this language
Data Type:EcTInt
Privilege:Private
Default Value:0

myProhibFuncList - Array of names of prohibited functions for a given language
Data Type:EcTChar**
Privilege:Private
Default Value:

Operations:

$DpAtProhibFuncListData - Constructor
Arguments:EcTChar*
Return Type:Void
Privilege:Public

GetNumProhibFuncs - Gets number of prohibited functions from this class
Arguments:EcTInt
Return Type:Void
Privilege:Public

GetProhibFuncs - Gets prohibited function list from this class storage
Arguments:EcTChar**

6-45 305-CD-027-002

Return Type:Void
Privilege:Public

ReadProhibFuncs - Reads prohibited function list from a file
Arguments:EcTChar*, EcTChar**
Return Type:Void
Privilege:Private

Associations:

The DpAtMgrProhibFuncListData class has associations with the following classes:
Class: DpAtMgrCheckProhibFuncCom

6.4.19 DpAtPGERegistrationFile Class

Parent Class:Not Applicable
Public:No
Distributed Object:No
Purpose and Description:
This object represents a file that is input into the PgeRegistrationGui. It is made up of Pge
Registration commands that can be parsed by the FileInput routine in
DpAtPgeRegistrationGui.

Attributes:

None

Operations:

None

Associations:

The DpAtPGERegistrationFile class has associations with the following classes:
Class: DpAtPgeRegistation Input
Class: DpAtPgeRegistationGui Input

6-46 305-CD-027-002

6.4.20 DpAtPgeActivationRuleB Class

Parent Class:Not Applicable
Public:No
Distributed Object:No
Purpose and Description:
This class creates the PGE Activation Rule GUI. It allows the user to update, create, or
change the Activation Rule of the current PGE.

Attributes:

DataScheduled - This attribute is used for Data Scheduled PGEs. It holds the information
needed to describe a Data Scheduled PGE.
Data Type:PlDataScheduled
Privilege:Private
Default Value:

OrbitModel - This attribute holds the definition of the Orbit Model for an Orbit Scheduled
PGE.
Data Type:PlOrbitModel
Privilege:Private
Default Value:

OrbitScheduled - This attribute is used for an Orbit Scheduled PGE. It holds all the
information needed to define an Orbit Scheduled PGE.
Data Type:PlOrbitScheduled
Privilege:Private
Default Value:

PGEActivationType - This is the Activation Type of the PGE. It has values of
DataScheduled, TimeScheduled, OrbitScheduled, TileScheduled, and OtherScheduled.
Data Type:enum
Privilege:Private
Default Value:

PGEProfileID - This attribute holds the ID of the PGE in the PDPS database. It is used to
access and update the PGE activation rule information.
Data Type:EctInt
Privilege:Private
Default Value:

PlClusterList - This attribute holds the Cluster and tile definitions for a Tile Scheduled
PGE.
Data Type:List of PlClusters

6-47 305-CD-027-002

Privilege:Private
Default Value:

TileScheduled - This attribute is used for Tile Scheduled PGEs. It holds all information
required to define a Tile Scheduled PGE.
Data Type:PlTileScheduled
Privilege:Private
Default Value:

TimeScheduled - This attribute is used for Time Scheduled PGEs. It holds the information
needed to define a Time Scheduled PGE.
Data Type:PlTimeScheduled
Privilege:Private
Default Value:

Operations:

DisplayActRuleAttr - This method displays the attributes and their values from
DataScheduled, TimeScheduled, OrbitScheduled, or TileScheduled PGEs based on the
value in PGEActivationType.
Arguments:
Return Type:Void
Privilege:Private
PDL:
 if (PGEActivationType = DataScheduled)
 {
 // Loop through all attributes in the PlDataScheduled and display them and their
 // corresponding value to the screen.
 }

 if (PGEActivationType = TimeScheduled)
 {
 // Loop through all attributes in the PlTimeScheduled and display them and their
 // corresponding value to the screen.
 }

 if (PGEActivationType = OrbitScheduled)
 {
 // Loop through all attributes in the PlOrbitScheduled and display them and their
 // corresponding value to the screen.
 }

 if (PGEActivationType = TileScheduled)

6-48 305-CD-027-002

 {
 // Loop through all attributes in the PlTileScheduled and display them and their
 // corresponding value to the screen.
 }

DisplayOrbitModel - This routine displays the Orbit Model for the PGE to the screen.
Note that it does nothing if PGEActivationType is NOT OrbitScheduled.
Arguments:
Return Type:Void
Privilege:Public
PDL:
 // Loop through all attributes in the PlOrbitModel and display them and their
 // corresponding value to the screen.

DisplayTiles - This method displays the Clusters and their underlining tiles for the current
PGE. Note that it does nothing if PGEActivationType is NOT TileScheduled.
Arguments:
Return Type:Void
Privilege:Public
PDL:
 // Loop through all attributes in the list of PlClusters and display them and their
 // corresponding value to the screen.

 // Loop through all PlTiles associated with the cluster and display their
 // attributes and values.

DpAtPgeActivationRule - This is the constructor for the class. It creates the PGE
Activation GUI. It takes in the PGEProfileID and calls ReadFromDatabase to retrieve the
Activation Rule information for the PGE. It then calls DisplayActRuleAttr to list to the
screen the current activation rules settings for the PGE. If the PGE is new,
ReadFromDatabase is not called.
Arguments:EctInt PGEProfileID
Return Type:Void
Privilege:Public
PDL:
 // Create the Pge Activation Rule GUI via Builder Xccessory
 // generated code.

 if (PGEProfileID != 0)
 {
 // Call ReadFromDatabase to retrived the activation rule information

6-49 305-CD-027-002

 // for the PGE. Create the appropirate type of class based on the
 // Activation Type of the PGE (DataScheduled, TimeScheduled, OrbitScheduled, or
 // TileScheduled), and fill in the values with those in the database.

 // Call DisplayActRuleAttr to display the attributes of the Activation Rule
 // to the screen.

 if (PGEActivationType = OrbitScheduled)
 // Call DisplayOrbitModel.
 if (PGEActivationType = TileScheduled)
 // Call DisplayTiles.
 }

DpAtPgeActivationRule - This constructor takes a Filename and Position in that file and
calls FileInput to parse the file and make any Activation Rule changes specified in the file.
It does not generate the Activation Rule GUI.
Arguments:EctInt PGEProfileID, RWCString Filename, EctInt Position
Return Type:Ectint
Privilege:Public
PDL:
 if (PGEProfileID != 0)
 {
 // Call ReadFromDatabase to retrived the activation rule information
 // for the PGE. Create the appropirate type of class based on the
 // Activation Type of the PGE (DataScheduled, TimeScheduled, OrbitScheduled, or
 // TileScheduled), and fill in the values with those in the database.
 }

 // Call FileInput to process the input file and make any changes specified in
 // the file.
 FileInput (Filename, Position);

FileInput - This routine parses the file specified by Filename, from Position, and calls the
other routines within this class to update the PGE's Activation Rule information based on
the inputs from the file.
Arguments:RWCString Filename, EctInt Position
Return Type:Void
Privilege:Private
PDL:
 while (not end of file)
 {
 // Parse the file specified by Filename starting at Position.

 // Based on the type of command in the file, call the routine in this class that will

6-50 305-CD-027-002

 // perform the appropriate action, specifying Display=0.

 if (Return from one of the routines != 0}
 // Exit loop.

 if (Command in the file is not Activation Rule command)
 // Exit loop.
 }

 // Set return code to Position or "bad" value from called routine.

ReadFromDatabase - This routine reads the Activation Rule information from the PGE
specified by PGEProfileID and places it in the appropriate local attribute(s).
Arguments:
Return Type:Void
Privilege:Private
PDL:
 // Query the database for the PGE defined by the attribute PGEProfileID.

SetPGEActivationType - This method sets the PGE Activation Type. If Display is true,
DisplayActRuleAttr is called to display a list of the attributes for that activation rule type.
Arguments:enum PGEActivationType

SubmitToDatabase - This routine submits the PGE Activation rule information back to
the database. It knows what attributes to store based on PGEActivationType.
Arguments:
Return Type:Void
Privilege:Public
PDL:
 // Write the created/changed Activation class back to the PDPS database.

UpdateActRuleAttr - This routine updates the specified attribute with the specified value,
based on the PGEActivationType. If Display is true, DisplayActRulAttr is called to list the
change to the screen.
Arguments:RWCString Attribute, RWCString Value, EctInt Display
Return Type:Void
Privilege:Public
PDL:
 // Call the Update routine of the appropriate class (based on the value
 // of PGEActivationType) and pass it the specified Attribute and Value.

6-51 305-CD-027-002

 if (Display)
 // Call DisplayActRuleAttr to display the changed attributes for the class.
 DisplayActRuleAttr ();

UpdateClusters - This routine updates the attribute of the Cluster or underlining tiles with
the specified value. If Display is true, DisplayTiles is called to redisplay the Cluster and
Tiles to the screen with the change.
Arguments:RWCString Attribute, RWCString Value, EctInt Display
Return Type:Void
Privilege:Public
PDL:
 // Call the Update routine of the PlCluster class or the PlTile class, and pass it the
specified
 // Attribute and Value.

 if (Display)
 // Call DisplayTiles to display the changed attributes for the class.
 DisplayTiles ();

UpdateOrbitModel - This routine updates the specified attribute to the specified value in
the orbit model. If Display is true, DisplaOrbitModel is called to redisplay the orbit model
to the screen.
Arguments:RWCString Attribute, RWCString Value, EctInt Display
Return Type:Void
Privilege:Public
PDL:
 // Call the Update routine of the PlOrbitModel class and pass it the specified
 // Attribute and Value.

 if (Display)
 // Call DisplayOrbitModel to display the changed attributes for the class.
 DisplayOrbitModel ();

~DpAtPgeActivationRule - This the destructor for the class. It removes the PGE
Activation Rule GUI from the display.
Arguments:
Return Type:Void
Privilege:Public
PDL:
 // Remove the PGE Activation Rule GUI via Builder Xccessory
 // generated code.

 // Delete any Activation Classes created.

6-52 305-CD-027-002

Associations:
The DpAtPgeActivationRuleB class has associations with the following classes:
Class: PlDataScheduled Create/Delete/Modify
Class: PlOrbitScheduledNB Create/Delete/Modify
Class: PlTileScheduledNB Create/Delete/Modify
Class: PlTimeScheduled Create/Delete/Modify
Class: DpAtPgeRegistationGui Creates
Class: PlCluster iscreated/deleted/modifiedby
Class: PlOrbitModelNB iscreated/deleted/modifiedby
Class: PlTile iscreated/deleted/modifiedby

6.4.21 DpAtPgeDataTypes Class

Parent Class:Not Applicable
Public:No
Distributed Object:No
Purpose and Description:
This class defines the PGE Data Type GUI that allows the user to add/delete/modify the
data types used by a PGE for Input and Output.

Attributes:

PGEInputs - This is a list of the input data types of the PGE.
Data Type:List of PlDataTypeB
Privilege:Private
Default Value:

PGEOutputs - This is a list of the output data types of the PGE.
Data Type:List of PlDataTypeB
Privilege:Private
Default Value:

PGEProfileID - This is the database ID of the PGE used for retrieving and storing
information from/to the PDPS database.
Data Type:EctInt
Privilege:Private
Default Value:

6-53 305-CD-027-002

Operations:

CreateNewDataType - This routine creates a new Data Type in the PDPS database. It
takes in a Data Descriptor file specified by Filename, and then queries the user for any
required information not provided in that file. If Display is true, the new data type is
displayed to the screen along with the previously existing data types.
Arguments:RWCString Filename, EctInt Display
Return Type:Void
Privilege:Public

DeleteInput - This routine deletes the Input selected by the user (or specified by FileInput)
from PGEInputs. If Display is true, then DisplayPgeInputs is called to display the change
to the list.
Arguments:PlDataTypeB Input, EctInt Display
Return Type:Void
Privilege:Public

DeleteOutput - This routine deletes the Output selected by the user (or specified by
FileInput) from PGEOutputs. If Display is true, DisplayPgeOutputs is called to show the
change to the screen.
Arguments:PlDataTypeB Output, EctInt
Return Type:Void
Privilege:Public

DisplayDataTypes - This routine calls ReadFromDatabase to get a list of all of the Data
Types in the PDPS database and displays them on the screen.
Arguments:
Return Type:Void
Privilege:Private

DisplayPgeInputs - This routine displays PGEInputs to the GUI.
Arguments:
Return Type:Void
Privilege:Private

DisplayPgeOutputs - This routine displays PGEOutputs to the GUI.
Arguments:
Return Type:Void
Privilege:Private

DpAtPgeDataTypes - This is the constructor for the class. It creates the PGE Data Type
GUI. It also calls ReadFromDatabase to query the PDPS database for the PGEProfileID,
and places the inputs and outputs of the PGE into PGEOutputs and PGEInputs.
Arguments:EctInt PGEProfileID

6-54 305-CD-027-002

Return Type:Void
Privilege:Public

DpAtPgeDataTypes - This constructor takes a Filename and Position in addition to the
PGEprofileID, and calls FileInput to processing the specified file after querying the PDPS
database for the PGE's inputs and outputs via a call to ReadFromDatabase.
Arguments:EctInt PGEprofileID, RWCString Filename, EctInt Position
Return Type:EctInt
Privilege:Public

FileInput - This routine takes the specified file and parses it from Position for any PGE
Data Type commands. To perform the commands specified in the file it calls the other
routines in this class.
Arguments:RWCString Filename, EctInt Position
Return Type:EctInt
Privilege:Private

ReadFromDatabase - This routine queries the PDPS database for the input and outputs of
the PGE specified by PGEProfileID. It places the returned inputs and outputs in PGEInputs
and PGEOutputs.
Arguments:
Return Type:Void
Privilege:Private

SelectNewInput - This routine takes the Input specified by the user (or in the input file
being parsed by FileInput) and places it in PGEInputs. If Display is true, the new input is
written to the screen.
Arguments:PlDataTypeB Input, EctInt Display
Return Type:Void
Privilege:Public

SelectNewOutput - This routine takes the Output selected by the user (or input from the
file if called by FileInput) and places it in PGEOutputs. If Display is true, the new output
is displayed to the screen via a call to DisplayPgeOutputs.
Arguments:PlDataTypeB Output, EctInt Display
Return Type:Void
Privilege:Public

SubmitToDatabase - This routine submits PGEInputs and PGEOutputs to the PDPS
database.
Arguments:
Return Type:Void
Privilege:Public

~DpAtPgeDataTypes - This is the destructor for the class. It removes the PGE DataTypes

6-55 305-CD-027-002

GUI from the screen.
Arguments:
Return Type:Void
Privilege:Public

Associations:

The DpAtPgeDataTypes class has associations with the following classes:
Class: PlAlternate Create/Delete/Modify
Class: PlDataTypeReqB Create/Delete/Modify
Class: PlOutputYield Create/Delete/Modify
Class: PlDataTypeB Create/Modify
Class: DpAtPgeRegistationGui Creates

6.4.22 DpAtPgeRegistation Class

Parent Class:Not Applicable
Public:No
Distributed Object:No
Purpose and Description:
This represents the PGE Registration GUIs.

Attributes:

None

Operations:

None

Associations:

The DpAtPgeRegistation class has associations with the following classes:
Class: DpAtPGERegistrationFile Input
Class: MgrGui RunProgram

6.4.23 DpAtPgeRegistationGui Class

6-56 305-CD-027-002

Parent Class:Not Applicable
Public:No
Distributed Object:No
Purpose and Description:
This class defines the PGE Registration GUI that allows the user to populate the profile of
the PGE in the PDPS database.

Attributes:

PGEDefinition - This attribute contains the basic information needed to define a PGE to
the PDPS database.
Data Type:PlPGE
Privilege:Private
Default Value:

myPGEID - This is the database identifier for the PGE. It is retrieved or assigned by the
database.
Data Type:EctInt
Privilege:Private
Default Value:

myPGEName - This is the name of the PGE. It is input or selected by the user.
Data Type:RWCString
Privilege:Private
Default Value:

myPGEVersion - This is the version id of the PGE. It is selected or input by the user.
Data Type:EctFloat
Privilege:Private
Default Value:

myPerformance - This attribute difines the performance statistics of the PGE.
Data Type:PlPerformance
Privilege:Private
Default Value:

myPerformanceFile - This is a file that contains performance statistics produced during a
run of the PGE.
Data Type:RWCString
Privilege:Private
Default Value:

myResourceFile - This is a file that contains resource useage of the PGE.

6-57 305-CD-027-002

Data Type:RWCString
Privilege:Private
Default Value:

myResourceUse - This attribute defines the resource requirements for the PGE.
Data Type:PlResourceRequirement
Privilege:Private
Default Value:

Operations:

ChangePGEDefiniton - This routine changes the attribute specified by Parameter to the
specified Value in PGEDefinition. If Display is true, DisplayPGE is called to redisplay the
information with the change.
Arguments:RWCString Parameter, RWCString Value, EctInt Display
Return Type:Void
Privilege:Public

ChangePerformanceParameter - This routine allows the user to change the specified
performance parameter to the entered value.
Arguments:RWCString Parameter, RWCString Value, EctInt Display
Return Type:Void
Privilege:Public

ChangeResourceParameter - This routine allows the user to alter the specified resource
parameter to the entered value.
Arguments:RWCString Parameter, RWCString Value, EctInt Display
Return Type:Void
Privilege:Public

DisplayPGE - This method displays the information in PGEDefintion to the screen.
Arguments:
Return Type:Void
Privilege:Public

DpAtPgeRegistrationGui - This is the constructor for the class. It creates the PGE
Registration GUI.
Arguments:
Return Type:EctVoid
Privilege:Public

DpAtPgeRegistrationGui - This constructor takes in a file and calls FileInput to parse the
file for PGE registration commands. The PGE Registration GUI is not created.

6-58 305-CD-027-002

Arguments:RWCString Filename
Return Type:EctInt
Privilege:Public

FileInput - This routine parses the file specified by Filename and calls other routines in
this class to process the PGE Registration commands.
Arguments:RWCString Filename
Return Type:EctInt
Privilege:Private

ListPerformance - This method displays the performance statistics of the current PGE
defined in myPerformance. It displays the values to the GUI.
Arguments:
Return Type:EctVoid
Privilege:Public

ListResource - This method lists the resources currently defined for the PGE in
myResourceUse. It displays those resources on the GUI.
Arguments:
Return Type:EctVoid
Privilege:Public

ReadPerformanceFile - This routine reads the performance file specified by Filename and
stores them in myPerformance.
Arguments:RWCString Filename, EctInt Display
Return Type:Void
Privilege:Public

ReadResourceFile - This routine reads the resource file specified by Filename and stores
the values in myResourceUse.
Arguments:RWCString Filename, EctInt Display
Return Type:Void
Privilege:Public

ReadfromDatabase - This routine queries the database for the PGE specified by
PGEName and Version (or PGEID), and returns the PGE Definition, Performance and
Resource information.
Arguments:
Return Type:EctInt
Privilege:Private

SetPGEName - This routine allows the user to set the name of the PGE. If the version of
the PGE is also set, the PDPS database is queried for the user specified PGE, and if found,
the PGE definition, Performance, and Resource information is retrieved. If the version has
not been set, a list of versions for the specified name is returned to the screen.

6-59 305-CD-027-002

Arguments:RWCString PGEName, EctInt Display
Return Type:Void
Privilege:Public

SetPGEVersion - This routine lets the user set the Version of the PGE. If the name of the
PGE is also set, the PDPS database is queried for the PGE. If the PGE is found in the PDPS
database, thePGE Definition, Performance, and Resource information is retrieved and
displayed.
Arguments:RWCString PGEVersion, EctInt Display
Return Type:Void
Privilege:Public

SubmittoDatabase - This routine submits the PGE definition, performance, and resource
information changes back to the PDPS database.
Arguments:
Return Type:EctInt
Privilege:Public

UpdateActivationRules - This method calls the constructor for the
DpAtPgeActivationRulesB class to create the PGE Activation Rules GUI.
Arguments:RWCString Filename, EctInt Position
Return Type:EctInt
Privilege:Public

UpdateDataTypes - This method calls the constructor for the DpAtPgeDataTypes class to
start the PGE Data Types GUI.
Arguments:RWCString Filename, EctInt Position
Return Type:EctInt
Privilege:Public

UpdateUserParameters - This method calls the constructor for the
DpAtPgeUserParameters class to invoke the PGE User Parameters GUI.
Arguments:RWCString Filename, EctInt Position
Return Type:Ectint
Privilege:Public

~DpAtPgeRegistrationGui - This is the destructor for the class. It removes the PGE
registration GUI from the screen.
Arguments:
Return Type:Void
Privilege:Public

6-60 305-CD-027-002

Associations:

The DpAtPgeRegistationGui class has associations with the following classes:
Class: PlPGE Creates/Deletes/Updates
Class: PlPGEProfile Creates/Deletes/Updates
Class: PlPerformance Creates/Deletes/Updates
Class: PlResourceRequirement Creates/Deletes/Updates
Class: DpAtPgeActivationRuleB Creates
Class: DpAtPgeDataTypes Creates
Class: DpAtPGERegistrationFile Input
Class: DpAtPgeUserParameters creates

6.4.24 DpAtPgeUserParameters Class

Parent Class:Not Applicable
Public:No
Distributed Object:No
Purpose and Description:
This class defines the PGE User Parameters GUI, that allows the user to add/delete/modify
the user parameters for a PGE.

Attributes:

PgeProfileID - This is the identifier of the PGE in the PDPS database.
Data Type:EctInt
Privilege:Private
Default Value:

UserParameters - This is the user parameters for the PGE.
Data Type:PlUserParameters
Privilege:Private
Default Value:

Operations:

AddNewParameter - This routine adds a new User Parameter to UserParameters. If
Display is true, then the new parameter is shown on the screen.
Arguments:RWCString Parameter, RWCString Value, EctInt Display
Return Type:EctInt
Privilege:Public

6-61 305-CD-027-002

DeleteParameter - This routine deletes a parameter from UserParameters. If Display is
true, the deleted parameter is removed from the GUI.
Arguments:RWCString Parameter, EctInt Display
Return Type:EctInt
Privilege:Public

DisplayParameters - This routine displays the parameters in UserParameters to the screen.
Arguments:
Return Type:Void
Privilege:Private

DpAtPgeUserParameters - This is the constructor for the class. It creates the PGE User
Parameters GUI that allows the user to update the user parameters for a PGE. A call to
ReadFromDatabase is made to retrieve the user Parameter information for the current PGE.
If the user Parameter information exists in the database, DisplayParameters is called to list
it to the screen.
Arguments:EctInt PgeProfileID
Return Type:EctVoid
Privilege:Public

DpAtPgeUserParameters - This constructor takes in a filename as well as a PgeId, and
passes the file onto FileInput for parsing. This constructor does not create the PGE User
Parameters GUI. A call to ReadFromDatabase is made with the argument PgeId to retrieve
the user parameter information for the PGE.
Arguments:EctInt PgeProfileID, RWCString Filename, EctInt Position
Return Type:EctInt
Privilege:Public

FileInput - This routine parses the file specified by Filename from the Position in the file,
and calls the other methods in this class to make the specified changes to the user
parameters of the PGE.
Arguments:RWCString Filename, EctInt Position
Return Type:EctInt
Privilege:Private

ModifyParameter - This routine modifies the specified User Parameter with the specified
value. If Display is true then the change is displayed to the screen.
Arguments:RWCString Parameter, RWCString Value, EctInt Display
Return Type:EctInt
Privilege:Public

ReadFromDatabase - This routine queries the PDPS database for the user parameters for
the PGE specified by PGEProfileID and places them in UserParameters.
Arguments:

6-62 305-CD-027-002

Return Type:EctInt
Privilege:Private

SearchForParameter - This routine searches UserParameters for the specified parameter.
If Display is true, and the parameter is found, it is highlighted on the GUI.
Arguments:RWCString Parameter, EctInt Display
Return Type:Ectint
Privilege:Public

SubmitToDatabase - This routine stores the attribute UserParameter back to the PDPS
database.
Arguments:
Return Type:EctInt
Privilege:Public

~DpAtPgeUserParameters - This is the destructor for the class. It removes the PGe user
Parameters GUI from the screen.
Arguments:
Return Type:EctVoid
Privilege:Public

Associations:

The DpAtPgeUserParameters class has associations with the following classes:
Class: PlUserParameters Create/Delete/Update
Class: DpAtPgeRegistationGui creates

6.4.25 DpAtProcGui Class

Parent Class:Not Applicable
Public:No
Distributed Object:No
Purpose and Description:
GUI for starting a job in the Data Processing subsystem. THIS IS NOT A CLASS. It is
callable from the Unix command line.

Attributes:

None

6-63 305-CD-027-002

Operations:

None

Associations:

The DpAtProcGui class has associations with the following classes:
Class: MgrGui RunProgram

6.4.26 DpAtSSAPFile Class

Parent Class:Not Applicable
Public:No
Distributed Object:No
Purpose and Description:
This is a file with SSAP commands.

Attributes:

None

Operations:

None

Associations:

The DpAtSSAPFile class has associations with the following classes:
Class: DpAtSSAPGuiNB Input

6.4.27 DpAtSSAPGuiNB Class

Parent Class:Not Applicable
Public:No
Distributed Object:No
Purpose and Description:
This class provides the primary access from AIT to the Science Software Archive Packages
stored at the Data Server. It provides a GUI definition to allow the user to select an SSAP

6-64 305-CD-027-002

to modify, create, or delete. It also allows the user the ability to activate the GUIs that allow
for the modification of the files contained within an SSAP, or an SSAP's metadata.

Attributes:

myCurrentSSAP - This attribute is the SSAP (from the list of SSAPs provided by the Data
Server) selected by the user.
Data Type:EctInt
Privilege:Private
Default Value:

mySSAP - This is the currently selected and retrieved SSAP. If an SSAP is being created,
then this is the SSAP under construction. It's type is defined by the SSAP type at the Data
Server.
Data Type:DsNsSceinceSoftwareArchivePackage
Privilege:Private
Default Value:

mySSAPFilters - This attribute holds the filter information put into the GUI by the user.
It is used to limit the listing of SSAPs to the screen. Its structure is that of an SSAP name
(RWCString) and a version (EctFloat).
Data Type:structure
Privilege:Private
Default Value:

mySSAPList - This attribute holds the list of SSAPs retrieved from the Data Server and
displayed on the GUI. Its structure is that of a list of SSAP names and versions.
Data Type:structure
Privilege:Private
Default Value:

Operations:

CreateSSAP - This method creates a new SSAP. It prompts the user for the new SSAP
name and version. If an existing SSAP has been chosen on the GUI, this routine prompts
the user if he/she wants to copy the files from that SSAP to the new SSAP. The copy is
performed if the user answers yes. Then the Edit SSAP File List GUI is started via a call
to EditSSAPFileList.
Arguments:RWCString SSAPName, EctInt Display
Return Type:EctInt
Privilege:Public
PDL:
 // Call CheckAccess to make sure the user is allowed to

6-65 305-CD-027-002

 // create an SSAP. If access is not allowed, then check Display
 // parameter, and display a failure message.

 if (SSAPName != null)
 // Call GetSSAP to retrive the selected SSAP from the Data
 // Server.
 GetSSAP (SSAPName);

 // Call RecordUpdate to log the fact that an SSAP has been created
 // by this user.

 if Display
 {
 // Query the user for the name of the new SSAP.

 // Call the constructor for the EditSSAPFileListGui so that
 // the user can manipulate the files in the new SSAP.
 DpAtEditSSAPFileListGuiNB::DpAtEditSSAPFileListGuiNB (mySSAP);

 // Call ListSSAP to update the list of Science Software
 // Archive Packages on the display.
 ListSSAP();
 }

DeleteSSAP - This method creates the Data Server command to delete the selected SSAP.
Arguments:RWCString SSAPName, EctInt Display
Return Type:EctInt
Privilege:Public
PDL:
 // Call CheckAccess to make sure the user is allowed to
 // delete an SSAP. If access is not allowed, then check Display
 // parameter, and display a failure message.

 // Create a Data Server command to delete the SSAP specified
 // by SSAPName. Send the command to the Data Server.

 // Call RecordUpdate to log the fact that an SSAP has been deleted
 // by this user.

 if Display
 // Call ListSSAP to update the list of Science Software
 // Archive Packages on the display.
 ListSSAP();

6-66 305-CD-027-002

DpAtSSAPGuiNB - This is the constructor that creates the SSAP Gui. It will call
CheckAccess from the DpAtAccess class to get the user's access level. The User's
privlages will be displayed on the GUI. It also calls ListSSAPs to get a list of SSAPs for
the user to work with.
Arguments:
Return Type:EctVoid
Privilege:Public
PDL: // Create SSAP GUI via Builder Xccessory generated
 // code.

 // mySSAPFilters set to a null value.

 // Initalize Data Server objects. Query Data Server
 // for list of Science Software Archive Packages (INSPECT).
 // Store the list of SSAPs in mySSAPList.

 // Call ListSSAP to put the list of Science Software
 // Archive Packages on the display.
 ListSSAP();

DpAtSSAPGuiNB - This constructor allows the class to accept input from the Filename
specified. It does not create the SSAP GUI, but parses the file for user actions relating to
SSAPs. It initalizes the interface with the Data Server and then calls other routines to parse
the input file and make the specified modifications to an existing SSAP or to create a new
one.
Arguments:RWCString Filename
Return Type:EctInt
Privilege:Public
PDL:
 // mySSAPFilters set to a null value.

 // Initalize Data Server objects. Query Data Server
 // for list of Science Software Archive Packages.
 // Store the list of SSAPs in mySSAPList.

 // Call FileInput to parse the input file.
 FileInput (Filename);

EditSSAPFiles - This routine is called when the user chooses to Edit SSAP Files. It calls
the constructor for DpAtEditSSAPFilesGuiNB.
Arguments:

6-67 305-CD-027-002

Return Type:EctInt
Privilege:Public
PDL: if (mySSAP = null)
 // Call GetSSAP to retrive the selected SSAP from the Data
 // Server.
 GetSSAP (SSAPName);

 // Call the constructor for the EditSSAPFileListGui so that
 // the user can manipulate the files in the SSAP.
 DpAtEditSSAPFileListGuiNB::DpAtEditSSAPFileListGuiNB (mySSAP);

EditSSAPFiles - This method creates the DpAtEditSSAPFileListGuiNB class. It passes
the Filename and current Position in that file onto the class so that file list changes can be
made to the current SSAP.
Arguments:RWCString Filename, EctInt Position
Return Type:EctInt
Privilege:Public
PDL:
 if (mySSAP = null)
 // Call GetSSAP to retrive the selected SSAP from the Data
 // Server.
 GetSSAP (SSAPName);

 // Call the constructor for the EditSSAPFileListGui so that
 // any File List changes can be made via the input file.
 DpAtEditSSAPFileListGuiNB::DpAtEditSSAPFileListGuiNB (
 mySSAP, Filename, Position);

EditSSAPMetadata - This routine is called when the user selects Edit SSAP Metadata
from the GUI. It calls the constructor for the DpAtEditSSAPMetdataGuiNB class.
Arguments:
Return Type:EctInt
Privilege:Public
PDL: if (mySSAP = null)
 // Call GetSSAP to retrive the selected SSAP from the Data
 // Server.
 GetSSAP (SSAPName);

 // Call the constructor for the EditSSAPMetaDataGui so that
 // the user can manipulate the metadata of the SSAP.
 DpAtEditSSAPMetaDataGuiNB::DpAtEditSSAPMetaDataGuiNB ();

6-68 305-CD-027-002

EditSSAPMetadata - This method creates the DpAtEditSSAPMetadataGuiNB class. It
passes the Filename and current Position in that file onto the class so that metadata changes
can be made to the current SSAP.
Arguments:RWCString Filename, EctInt Position
Return Type:EctInt
Privilege:Public
PDL:
 if (mySSAP = null)
 // Call GetSSAP to retrive the selected SSAP from the Data
 // Server.
 GetSSAP (SSAPName);

 // Call the constructor for the EditSSAPMetaDataGui so that
 // any File List changes can be made via the input file.
 DpAtEditSSAPMetaDataGuiNB::DpAtEditSSAPMetaDataGuiNB (
 mySSAP, Filename, Position);

FileInput - This method parses the file specified and calls the routines of this class to make
the SSAP changes specified.
Arguments:RWCString Filename
Return Type:EctInt
Privilege:Private
PDL:
 // Open the file specified by Filename.

 while (there is more to read in the file)
 {
 // Parse each line in the file.
 switch
 {
 // For each type of file input command, call the
 // appropriate routine within this class to
 // process it.

 if (bad input from file)
 // Exit loop.

 if (bad return code from called routine)
 // Exit loop.
 }
 }

 // Close the file.

6-69 305-CD-027-002

 // return status.

GetSSAP - This method creates the Data Server command to Acquire the selected SSAP
from the Data Server. It places it in mySSAP.
Arguments:RWCString SSAPName
Return Type:EctVoid
Privilege:Private
PDL:
 // Create a Data Server command to ACQUIRE the SSAP specified
 // by SSAPName. Send the command to the Data Server.
 // Set mySSAP equal to the retrieved SSAP.

ListSSAPs - This routine is called when the GUI needs to display a list of SSAPs for the
user to choose from. It makes a Data Server Query to get a list of all SSAPs that meets the
filters specified in mySSAPFilters.
Arguments:
Return Type:EctVoid
Privilege:Private
PDL:
 while (not done with the list)
 {
 if mySSAPFilters != null
 // Check for the current entry in mySSAPList to match the
 // value in mySSAPFilters.
 if (match)
 // Display the name of the SSAP in position i of
 // mySSAPList.

 // Display the name of the SSAP in position i of
 // mySSAPList.
 }

SetSSAPFilters - This method updates the SSAP filters for the display. It then calls the
routine that displays the list of SSAPs, so that only those SSAPs matching the filter criteria
appear on the GUI.
Arguments:structure GUIFIlters
Return Type:EctVoid
Privilege:Public
PDL:

6-70 305-CD-027-002

 // Read filter information (SSAP name & version) from the display using
 // Builder Xccessory generated code. Place into mySSAPFilters.
 mySSAPFilters=GUIFilters;

 // Call ListSSAPs to update the display.
 ListSSAPs ();

SubmitSSAP - This routine creates the Data Server command to Insert mySSAP into the
Data Server.
Arguments:RWCString SSAPName, EctInt Display
Return Type:EctInt
Privilege:Public
PDL:
 // Create a Data Server command to INSERT the SSAP specified
 // by SSAPName. Send the command to the Data Server.

 // Set mySSAP to null because we are done with it.
 mySSAP=null;

 if Display
 // Call ListSSAP to update the list of Science Software
 // Archive Packages on the display.
 ListSSAP();

~DpAtSSAPGuiNB - This is the destructor for the DpAtSSAPGuiNB class. It is called
when the user exits the GUI.
Arguments:
Return Type:EctVoid
Privilege:Public
PDL:
 // Call destructors for the other SSAP GUIs if they exist.
 DpAtEditSSAPMetaDataGuiNB::~DpAtEditSSAPMetaDataGuiNB ();
 DpAtEditSSAPFileListGuiNB::~DpAtEditSSAPFileListGuiNB ();

 // Use Builder Xcessory generated code to remove the
 // GUI from the screen.

 // Delete Data Server objects and close the connection with
 // the Data Server.

6-71 305-CD-027-002

Associations:
The DpAtSSAPGuiNB class has associations with the following classes:
Class: GlParameterList Create/Insert
Class: DsClESDTReferenceCollector Create/SetCallback
Class: DsClCommand Create/SetCategory/SetServiceName
Class: GlParameter Create/SetParameter
Class: DsClRequest Create/Submit
Class: DpAtEditSSAPFileListGuiNB Executes
Class: DpAtEditSSAPMetaDataGuiNB Executes
Class: DpAtSSAPFile Input
Class: DpAtAccessNB Query
Class: MgrGui executes

6.4.28 DpPrAITManualIF Class

Parent Class:Not Applicable
Public:No
Distributed Object:No
Purpose and Description:
This class represents the Algorithm Integration & Test interface for the manual staging and
destaging of data, algorithms, executables, or other stored items which have Universal
References.

Attributes:

myManualIFWindow - This represents the GUI which will allow the AI&T position to
manually stage and destage data products, executables, algorithms, etc.
Data Type:
Privilege:Private
Default Value:

Operations:

Destage - This operation is used by the Algorithm Integration & Test position to destage a
piece of data, a PGE, an algorithm, or anything else which can be located by a UR.
Arguments:Item:GlUR
Return Type:Void
Privilege:Public

Stage - This operation stages the item located by the input UR. This can be a data granule,

6-72 305-CD-027-002

a PGE, an algorithm, or anything else located by a UR.
Arguments:Item:GlUR
Return Type:Void
Privilege:Public

Associations:

The DpPrAITManualIF class has associations with the following classes:
Class: DsClRequest Builds
Class: DsClESDTReferenceCollector SubmitsRequestThrough

6.4.29 DsClCommand Class

Parent Class:Not Applicable

Attributes:

None

Operations:

None

Associations:

The DsClCommand class has associations with the following classes:
Class: DpAtSSAPGuiNB Create/SetCategory/SetServiceName
DsClRequest (Aggregation)

6.4.30 DsClESDTReferenceCollector Class

Parent Class:Not Applicable
Public:No
Distributed Object:Yes
Purpose and Description:
This public, distributed class is a specialization of the Collector class which handles
DsClESDTReferences. This class is much more complex than the base class. This class

6-73 305-CD-027-002

provides, in addition to the normal set operations for ESDTReferences, the ability to
handle requests, working-collection synchronization, and sessions. It also contains private
operations to hand the ESDTReference-level actions to the dataserver.

Attributes:

None

Operations:

None

Associations:

The DsClESDTReferenceCollector class has associations with the following classes:
Class: DpAtSSAPGuiNB Create/SetCallback
Class: DpPrAITManualIF SubmitsRequestThrough

6.4.31 DsClRequest Class

Parent Class:Not Applicable

Attributes:

None

Operations:

None

Associations:

The DsClRequest class has associations with the following classes:
Class: DpPrAITManualIF Builds
Class: DpAtSSAPGuiNB Create/Submit
DsClESDTReferenceCollector (Aggregation)

6-74 305-CD-027-002

6.4.32 EosView Class

Parent Class:Not Applicable
Public:No
Distributed Object:No
Purpose and Description:
EosView program; displays contents of ECS HDF files. THIS IS NOT A CLASS. It is
callable from the Unix command line.

Attributes:

None

Operations:

None

Associations:

The EosView class has associations with the following classes:
Class: MgrGui SpawnProgram

6.4.33 FORTRAN77codechecker Class

Parent Class:Not Applicable
Public:No
Distributed Object:No
Purpose and Description:
FORTRAN 77 code checker FORCHECK. A FORTRAN 77 code checker is necessary
because most compilers (and presumably delivered F77 code) will not adhere strictly to
the F77 ANSI standard. THIS IS NOT A CLASS. It is callable from the Unix command
line.

Attributes:

None

Operations:

6-75 305-CD-027-002

None

Associations:

The FORTRAN77codechecker class has associations with the following classes:
Class: MgrGui SpawnProgram

6.4.34 Generalvisualizationtool Class

Parent Class:Not Applicable
Public:No
Distributed Object:No
Purpose and Description:
This is an Abstract Class used tp represent the General data visualization tool IDL. It is
callable from the Unix command line.

Attributes:

None

Operations:

None

Associations:

The Generalvisualizationtool class has associations with the following classes:
Class: MgrGui SpawnProgram

6.4.35 GlParameter Class

Parent Class:Not Applicable
Public:No
Distributed Object:No
Purpose and Description:
This class defines a parameter that is set in the request to the Data Server. One or more of
these make up a GlParameterList.

6-76 305-CD-027-002

Attributes:

None

Operations:

None

Associations:

The GlParameter class has associations with the following classes:
Class: DpAtSSAPGuiNB Create/SetParameter

6.4.36 GlParameterList Class

Parent Class:Not Applicable
Public:No
Distributed Object:No
Purpose and Description:
This class defines a list of parameters in a request to the Daat Server.

Attributes:

None

Operations:

None

Associations:

The GlParameterList class has associations with the following classes:
Class: DpAtSSAPGuiNB Create/Insert

6.4.37 Instrument-specificscript Class

6-77 305-CD-027-002

Parent Class:Not Applicable
Public:No
Distributed Object:No
Purpose and Description:
Scripts written by users specific to an instrument configuration. Use for code check-in,
compiling, running, etc. THIS IS NOT A CLASS. It is callable from the Unix command
line.

Attributes:

None

Operations:

None

Associations:

The Instrument-specificscript class has associations with the following classes:
Class: MgrGui RunProgram

6.4.38 MgrGui Class

Parent Class:Not Applicable
Public:No
Distributed Object:No
Purpose and Description:
MgrGui is the main AIT Manager Gui. This class is necessarily ill-defined since it will
contain code generated by the GUI builder.

Attributes:

myMotifRcFileData - Data read from Motif resources file, including menu labels, and
program names and arguments where appropriate
Data Type:EcTChar**
Privilege:Private
Default Value:

6-78 305-CD-027-002

Operations:

DisplayReturnValue - Displays value returned by system call on GUI
Arguments:EcTChar*,EcTInt
Return Type:EcTInt
Privilege:Public

Processor - Main AIT Manager GUI processor
Arguments:DpAtMgrGuiActivityData,DpAtMgrChecklistData,DpAtMgrLogData
Return Type:EcTInt
Privilege:Public

RunProgram - Run a program which is callable from the Unix command line Input: Unix
program name and options as a single string *****PDL***** Make system call to run
program Wait for program to execute Return same return value from program
Arguments:EcTChar*
Return Type:EcTInt
Privilege:Public

SpawnProgram - Spawns a Unix program or script. Immediately returns a return value
without waiting for program to execute.
Arguments:EcTChar*
Return Type:EcTInt
Privilege:Public

Associations:

The MgrGui class has associations with the following classes:
Class: DpAtMgrLogData
Class: DpAtMgrCom Processorctor()
Class: DpAtMgrChecklistData PutActivityFlagPutCurrentIndex
Class: DpAtMgrGuiActivityData
PutSelectedAreaPutMenuSelectionGetActivityRequestPutProgramReturnValue
Class: CMscript RunProgram
Class: DpAtMgrCheckHdfFile RunProgram
Class: DpAtPgeRegistation RunProgram
Class: DpAtProcGui RunProgram
Class: Instrument-specificscript RunProgram
Class: Analysisenvironment SpawnProgram
Class: EosView SpawnProgram
Class: FORTRAN77codechecker SpawnProgram
Class: Generalvisualizationtool SpawnProgram
Class: Postscriptfileviewer SpawnProgram

6-79 305-CD-027-002

Class: Text-graphicsviewer SpawnProgram
Class: Webbrowser SpawnProgram
Class: Windowsemulator SpawnProgram
Class: xterm SpawnProgram
Class: DpAtMgrBinaryFileEnvironmentGui executes
Class: DpAtSSAPGuiNB executes

6.4.39 PlAlternate Class

Parent Class:Not Applicable
Public:No
Distributed Object:No
Purpose and Description:
This object defines alternate inputs for a PGE. It is a PLS class.

Attributes:

None

Operations:

None

Associations:

The PlAlternate class has associations with the following classes:
Class: DpAtPgeDataTypes Create/Delete/Modify

6.4.40 PlCluster Class

Parent Class:Not Applicable
Public:No
Distributed Object:No
Purpose and Description:
This class defines a group of Tiles. It is a PLS class.

Attributes:

6-80 305-CD-027-002

None

Operations:

None

Associations:

The PlCluster class has associations with the following classes:
Class: DpAtPgeActivationRuleB iscreated/deleted/modifiedby

6.4.41 PlDataScheduled Class

Parent Class:Not Applicable
Public:No
Distributed Object:No
Purpose and Description:
This class defines a Data Scheduled PGE. It is a PLS class.

Attributes:

None

Operations:

None

Associations:

The PlDataScheduled class has associations with the following classes:
Class: DpAtPgeActivationRuleB Create/Delete/Modify

6.4.42 PlDataTypeB Class

Parent Class:Not Applicable
Public:Yes
Distributed Object:No
Persistent Class:True

6-81 305-CD-027-002

Purpose and Description:
This class describes a data type known to the planning subsystem. This is a description of
an input or output type, distinct to a granule or instance of the data type. The class is an
abstraction or proxy that describes one of the Data Server ESDTs. The class captures data
and operations that are required to subscribe and receive notification from the Data Server
when a new instance of the Data Type arrives.

Attributes:

None

Operations:

None
Associations:
The PlDataTypeB class has associations with the following classes:
Class: DpAtPgeDataTypes Create/Modify

6.4.43 PlDataTypeReqB Class

Parent Class:Not Applicable
Public:No
Distributed Object:No
Purpose and Description:
This class defines the required inputs for a PGE. It is a PLS class.

Attributes:

None

Operations:

None
Associations:
The PlDataTypeReqB class has associations with the following classes:
Class: DpAtPgeDataTypes Create/Delete/Modify

6-82 305-CD-027-002

6.4.44 PlOrbitModelNB Class

Parent Class:Not Applicable
Public:No
Distributed Object:No
Purpose and Description:
This class defines an Orbit Model for an Orbit Scheduled PGE. It is a PLS class.

Attributes:

None

Operations:

None
Associations:
The PlOrbitModelNB class has associations with the following classes:
Class: DpAtPgeActivationRuleB iscreated/deleted/modifiedby

6.4.45 PlOrbitScheduledNB Class

Parent Class:Not Applicable
Public:No
Distributed Object:No
Purpose and Description:
This class defines an Orbit Scheduled PGE. It is a PLS class.

Attributes:

None

Operations:

None
Associations:
The PlOrbitScheduledNB class has associations with the following classes:
Class: DpAtPgeActivationRuleB Create/Delete/Modify

6-83 305-CD-027-002

6.4.46 PlOutputYield Class

Parent Class:Not Applicable
Public:No
Distributed Object:No
Purpose and Description:
This class defines the expected output yield of a PGE's output. It is a PLS class.

Attributes:

None

Operations:

None

Associations:

The PlOutputYield class has associations with the following classes:
Class: DpAtPgeDataTypes Create/Delete/Modify

6.4.47 PlPGE Class

Parent Class:Not Applicable
Public:No
Distributed Object:No
Purpose and Description:
 This is the base class within a generalization hierachy that describes PGEs. The class
defines abstract operations required for the palnning subsystem to work out when a GE
needs to be scheduled as well as containing the key attributes defining the PGE.

Attributes:

None

Operations:

None

6-84 305-CD-027-002

Associations:

The PlPGE class has associations with the following classes:
Class: DpAtPgeRegistationGui Creates/Deletes/Updates

6.4.48 PlPGEProfile Class

Parent Class:Not Applicable
Public:No
Distributed Object:No
Purpose and Description:
This class represents a specific PGE Profile. It is a PLS class.

Attributes:

None

Operations:

None

Associations:

The PlPGEProfile class has associations with the following classes:
Class: DpAtPgeRegistationGui Creates/Deletes/Updates

6.4.49 PlPerformance Class

Parent Class:Not Applicable
Public:No
Distributed Object:No
Purpose and Description:
This class contains the basic information that defines a PGE to PDPS. It is a PLS class.

Attributes:

None

6-85 305-CD-027-002

Operations:

None

Associations:

The PlPerformance class has associations with the following classes:
Class: DpAtPgeRegistationGui Creates/Deletes/Updates

6.4.50 PlResourceRequirement Class

Parent Class:Not Applicable
Public:No
Distributed Object:No
Purpose and Description:
This class defines the performance statistics for a PGE. It is a PLS class.

Attributes:

None

Operations:

None

Associations:

The PlResourceRequirement class has associations with the following classes:
Class: DpAtPgeRegistationGui Creates/Deletes/Updates

6.4.51 PlTile Class

Parent Class:Not Applicable
Public:No
Distributed Object:No
Purpose and Description:
This class defines a Tile, a geographic location for a PGE to process. It is a PLS class.

6-86 305-CD-027-002

Attributes:

None

Operations:

None

Associations:

The PlTile class has associations with the following classes:
Class: DpAtPgeActivationRuleB iscreated/deleted/modifiedby

6.4.52 PlTileScheduledNB Class

Parent Class:Not Applicable
Public:No
Distributed Object:No
Purpose and Description:
This class defines a Tile Scheduled PGE. It is a PLS class.

Attributes:

None

Operations:

None
Associations:
The PlTileScheduledNB class has associations with the following classes:
Class: DpAtPgeActivationRuleB Create/Delete/Modify

6.4.53 PlTimeScheduled Class

Parent Class:Not Applicable
Public:No
Distributed Object:No
Purpose and Description:

6-87 305-CD-027-002

This class defines a Time Scheduled PGE. It is a PLS class.

Attributes:

None

Operations:

None

Associations:

The PlTimeScheduled class has associations with the following classes:
Class: DpAtPgeActivationRuleB Create/Delete/Modify

6.4.54 PlUserParameters Class

Parent Class:Not Applicable
Public:No
Distributed Object:No
Purpose and Description:
This class defines the User Parameters for the PGE and their default values to the PDPS
database. It is a PLS class.

Attributes:

None

Operations:

None

Associations:

The PlUserParameters class has associations with the following classes:
Class: DpAtPgeUserParameters Create/Delete/Update

6-88 305-CD-027-002

6.4.55 Postscriptfileviewer Class

Parent Class:Not Applicable
Public:No
Distributed Object:No
Purpose and Description:
This is an Abstract Class used to represent the PostScript file viewer Ghostview. THIS IS
NOT A CLASS. It is callable from the Unix command line.

Attributes:

None

Operations:

None

Associations:

The Postscriptfileviewer class has associations with the following classes:
Class: MgrGui SpawnProgram

6.4.56 Text-graphicsviewer Class

Parent Class:Not Applicable
Public:No
Distributed Object:No
Purpose and Description:
This is an abstract class used to represnet the Text and graphics Adbode Acrobat. It is
callable from the Unix command line.

Attributes:

None

Operations:

None

6-89 305-CD-027-002

Associations:

The Text-graphicsviewer class has associations with the following classes:
Class: MgrGui SpawnProgram

6.4.57 Webbrowser Class

Parent Class:Not Applicable
Public:No
Distributed Object:No
Purpose and Description:
This is an abstract class used to represnt WorldWideWeb browser Mosaic. It is callable
from the Unix line.

Attributes:

None

Operations:

None

Associations:

The Webbrowser class has associations with the following classes:
Class: MgrGui SpawnProgram

6.4.58 Windowsemulator Class

Parent Class:Not Applicable
Public:No
Distributed Object:No
Purpose and Description:
Run SoftWindows DOS/Windows emulator. THIS IS NOT A CLASS. It is callable from
the Unix command line.

Attributes:

6-90 305-CD-027-002

None

Operations:

None

Associations:

The Windowsemulator class has associations with the following classes:
Class: MgrGui SpawnProgram

6.4.59 xterm Class

Parent Class:Not Applicable
Public:No
Distributed Object:No
Purpose and Description:
This is an Abstract Class used to represent an Unix xterm. CM (ClearCase) view is set
automatically since a view is already up when AIT Manager is invoked. It is callable from
the Unix command line.

Attributes:

None

Operations:

None

Associations:

The xterm class has associations with the following classes:
Class: MgrGui SpawnProgram

6-91 305-CD-027-002

6.5 CSCI Dynamic Model

6.5.1 AIT Manager GUI Scenarios

This section gives scenarios for use of the AIT Manager GUI. These scenarios cover various
operations which will be invoked from the AITTL Manager GUI. These operations include
initiating one of the many COTS tools which will be provided for integration and test activities.

6.5.1.1 Display Main AIT Manager GUI

6.5.1.1.1 Abstract

This scenario occurs whenever the AIT Manager is invoked. Information used to set up the AI&T
Manager GUI is gathered from various input files. This information sets the various user
preferences invoked for the GUI.

6.5.1.1.2 Stimulus

The initial stimulus is invoked by the Algorithm Integration and Test Operations staff who initiates
the AIT Manager program name and options from the UNIX command line. Before this operation
can occur, the Configuration Management (ClearCase) view must have been set previously.

6.5.1.1.3 Desired Response

Main AIT Manager GUI, including checklist and log, is displayed on user's screen.

6.5.1.1.4 Participating Classes from the Object Model

• DpAtMgrCom

• DpAtMgrCmdLineData

• DpAtMgrInstrConfigData

• DpAtMgrChecklistData

• DpAtMgrLogData

• DpAtMgr

• DpAtMgrGuiActivityData

• DpAtMgrGui

6.5.1.1.5 Scenario Description

a. User logs into AIT development machine

b. User sets a CM (ClearCase) view

c. User types in AIT Manager executable name and options, if any

d. The default command line options are read from a file; instrument name, instrument config
file logical, and static Motif resources file logical.

e. If user typed in any command line options, these options overwrite the defaults, and the
new defaults are saved to a file.

6-92 305-CD-027-002

f. The instrument configuration data is read from a file: script names, options, menu labels,
file logicals, checklist, and log file logicals.

g. The Static Motif resources file is read (all AIT Manager menu data except RUN menu:
menu names, locations, program names and options if applicable), and the dynamic Motif
resources file is written. This file consists of static motif resources data and instrument
config data for RUN menu item.

h. Checklist file data and the last log entry is read.

i. Main AIT Manager GUI is displayed, using dynamic Motif resources file, checklist data
and last log entry data.

6.5.1.1.5 Event Trace

Figure 6.5-1 shows the display AI&T main GUI event trace.

6-93
305-C

D
-027-002

Figure 6.5-1. Display AIT Manager GUI Event Trace

User
DpAtMgrCom DpAtMgrCmdLineData

DpAtMgrInstrConfigData

DpAtMgrChecklistData

DpAtMgrLogData

DpAtMgrGuiActivityData

DpAtMgr

MgrGui User

ctor()

Command line options

GetInstrConfigLogical()

GetChecklistFileLogical()

ctor()

ctor()

ctor()

GetStaticMotifRcFileLogical

ctor()

ctor()

GetLogFileLogical()

ctor()

Processor(DpAtMgrGuiActivityData, DpAtMgrChecklistData, DpAtMgrLogData)

GUI display

GetActivityRequest()

6-94 305-CD-027-002

6.5.1.2 Select a TOOLS Menu Item

6.5.1.2.1 Abstract

This scenario details what happens when the user selects TOOLS menu item xterm. The scenario
applies equally to the other TOOLS menu items, which are COTS programs (unless noted) useful
in the AIT environment:

a. General visualization (IDL)

b. Web browser (Mosaic)

c. Text-graphics viewer (Acrobat)

d. PostScript file viewer (Ghostview)

e. Windows emulator (SoftWindows)

f. Analysis environment (SPARCWorks on AIT Sun Workstation, CODEVision on AIT SGI
Workstation)

g. HDF file visualization (EosView, an ECS custom application)

h. Fortran 77 code checker (FORCHECK)

i. Dynamic memory leak detector

6.5.1.2.2 Stimulus

User pulls down TOOLS menu, clicks on xterm.

6.5.1.2.3 Desired Response

X-Windows system xterm is displayed. CM (ClearCase) view is automatically set by CM.

6.5.1.2.4 Participating Classes From the Object Model

• DpAtMgrGui

6.5.1.2.5 Scenario Description

a. AIT Manager screen previously displayed

b. User pulls down TOOLS menu

c. User clicks on xterm

d. UNIX xterm is displayed, which automatically has a CM (ClearCase) view set

e. status value is immediately returned indicating whether xterm was successfully spawned

f. User types commands into xterm

g. Other AIT Manager selections are always available during this time

h. xterm remains up until user kills it manually or logs off the machine

6.5.1.2.6 Event Trace

Figure 6.5-2 shows the run tools menu event trace.

6-95
305-C

D
-027-002

Figure 6.5-2. Run Tools Item Event Trace

MgrGui User

xterm

Tool menu items
are permanently detached

after being spawned

Example applies to
all TOOLS menu items

DpAtMgrGuiActivityData

Tool menu choice

SpawnProgram(EcTChar*)

xterm window

Display GUI

PutProgramReturnValue(EcTInt)

6-96 305-CD-027-002

6.5.1.3 Select a UTILITIES Menu Item

6.5.1.3.1 Abstract

This scenario represents activities that occur when the user selects UTILITIES menu item
DpAtMgrCheckHdfFile. It applies equally to other UTILITIES menu items, which are all ECS
custom programs:

PGE Registration GUI (DpAtPgeRegistration)
CM scripts
DpAtMgrCheckPcfGui
DpAtMgrBinaryFileEnvironmentGui
DpAtMgrCheckProhibFuncGui
DpAtMgrSSAPGuiNB

This scenario also applies to RUN menu items:

Instrument-specific scripts

6.5.1.3.2 Stimulus

The Algorithm Integration and Test Operations Staff wants to compare versions of HDF files
generated at the SCF to the HDF files generated at the DAAC with SCF Toolkit linked in.

6.5.1.3.3 Desired Response

HDF file checker GUI is displayed

6.5.1.3.4 Participating Classes from the Object Model

• DpAtMgrCom
• DpAtMgr
• DpAtMgrGuiActivityData
• DpAtMgrGui
• DpAtMgrCheckHdfFil

6.5.1.3.5 Scenario Description

a. AIT Manager screen previously displayed
b. User pulls down UTILITIES menu
c. User clicks on HDF file checker
d. HDF file checker GUI is displayed
e. User makes GUI selections, to compare HDF files and/or display HDF metadata
f. Other AIT Manager selections are unavailable during this time
g. User quits from HDF file checker GUI
h. Return value from GUI triggers error handling, if necessary
i. AIT Manager waits for another user selection

6.5.1.3.6 Event Trace

Figure 6.5-3 shows the run utility menu item event trace.

6-97
305-C

D
-027-002

Figure 6.5-3. Run Utility Menu Item Event Trace

DpAtMgrCom DpAtMgrGuiActivityDataDpAtMgr MgrGui
User

DpAtMgrCheckHdfFile

Error handling is done next

Example applies to all
UTILITY and RUN

menu items

UTILITY menu choice

Processor(DpAtMgrGuiActivityData, DpAtMgrChecklistData, DpAtMgrLogData)

PutSelectedArea(EcTInt=1)

PutMenuSelection(EcTInt*)

PutProgramReturnValue(EcTInt)

GetSelectedArea()

GetMenuSelection()

GetProgramReturnValue()

RunProgram(EcTChar*="DpAtMgrCheckHdfFile")

Return value

Processor(DpAtMgrGuiActivityData,DpAtMgrChecklistData,DpAtMgrLogData)

Display GUI

Return value display

6-98 305-CD-027-002

6.5.1.4 Select a Checklist Item

6.5.1.4.1 Abstract

The AIT Manager checklist is a display of items required for check-in, compilation, test execution,
etc. of science software. It is displayed as a line of text for each item, with a check box that is
checked or unchecked. Each item has a unique ID; the checklist is specific to an instrument
configuration. The checklist is manual, in that the user must check it with a mouse click; the
program does not check any boxes automatically. Each time a box is checked, the log is updated.

This scenario shows what happens when a box for an item is checked.

6.5.1.4.2 Stimulus

User wants to record that compile and link to SCF Toolkit was successful.

6.5.1.4.3 Desired Response

Box is displayed as checked; log is updated. Item is noted as checked in checklist file after AIT
Manager exits.

6.5.1.4.4 Participating Classes from the Object Model

• DpAtMgrCom

• DpAtMgr

• DpAtMgrGuiActivityData

• DpAtMgrGui

• DpAtMgrChecklistData

• DpAtMgrLogData

6.5.1.4.5 Scenario Description

a. AIT Manager has been previously displayed

b. User separately compiles and links science software with SCF Toolkit, e.g., by instrument-
specific script or CM script

c. User clicks on check box for "Compile and link with SCF Toolkit" item

d. Checklist item state is changed from unchecked to checked internally

e. Checked box is displayed

f. New log entry is created, displayed on screen, and written to log file

6.5.1.4.6 Event Trace

Figure 6.5-4. shows the select checklist item event trace.

6-99
305-C

D
-027-002

Figure 6.5-4. Select Checklist Item

DpAtMgrCom DpAtMgrGuiActivityDataDpAtMgr MgrGui
User

DpAtMgrChecklistData

DpAtMgrLogData

Checklist item checked

Processor(DpAtMgrGuiActivityData, DpAtMgrChecklistData, DpAtMgrLogData)

PutSelectedArea(EcTInt=2)

GetSelectedArea()

Processor(DpAtMgrGuiActivityData,DpAtMgrChecklistData,DpAtMgrLogData)

Display GUI

PutActivityFlag(EcTInt=1)

PutCurrentIndex(EcTInt)

ChangeItemState()

WriteLogEntry()

6-100 305-CD-027-002

6.5.2 Acquiring and Inserting Data Scenarios

This section describes the scenario for the AITTL ability to allow the user to Acquire data from or
Insert data to the Data Server.

6.5.2.1 Submit Staging or Destaging Request

6.5.2.1.1 Abstract

These scenarios describe the functions provided to manually initiate the staging (Acquire) or
destaging (Insert) of data, i.e., Science software, Test Data, etc., which are archived in the Data
Server archive, The steps taken are very similar to activities performed in the Processing CSCI to
automatically initiate staging or destaging by a software application. This will be added to the Ir-1
provided functionality for Release B.

6.5.2.1.2 Stimulus

DAAC Operations Staff initiates the staging or destaging of data.

6.5.2.1.3 Desired Response

Data is staged or destaged.

6.5.2.1.4 Participating Classes from the Object Model

• DpPrAITManualIF

• DsCIESDTReferenceCollector

• DsCIRequest

• DSCICommand

6.5.2.1.5 Scenario Description

a. AIT Manager has been previously displayed

b. User Requests the staging or destaging of a given data item, using specified reference
materials as input guidance.

c. Data Server copies data to specified storage location.

d. Data Server informs AITTL when completed.

6.5.2.1.6 Event Trace

Figure 6.5-5 shows the submit staging request event trace. Figure 6.5-6 shows the submit destaging
request event trace.

6-101
305-C

D
-027-002

Figure 6.5-5. Submit Staging Request

(Staff)
AI&T Ops

DpPrAITManualIF DsClESDTReferenceCollector DsClRequest DsClCommand

Stage(UR)
DsClESDTReferenceCollector

(UR)

DsClCommand("Acquire")

DsClRequest(DsClCommand)

Submit(DsClESDTReferenceCollector)

6-102
305-C

D
-027-002

Figure 6.5-6. Submit Destaging Request

(Staff)
AI&T Ops

DpPrAITManualIF DsClESDTReferenceCollector DsClRequest DsClCommand

Destage(UR)
DsClESDTReferenceCollector

(UR)

DsClCommand("Insert")

DsClRequest(DsClCommand)

Submit(DsClESDTReferenceCollector)

6-103 305-CD-027-002

6.5.3 Science Software Archive Package GUI Scenarios

This section describes scenarios for the uses of the AITTL Science Software Archive Package
GUIs.

6.5.3.1 Starting the AITTL Science Software Archive Package (SSAP) GUI

6.5.3.1.1 Abstract

This scenario describes the execution of the SSAP GUI from a choice on the AIT Manager GUI.

6.5.3.1.2 Stimulus

DAAC Operations Staff want to manipulate an SSAP at the Data Server, so they choose the SSAP
GUI option from the UTILITY menu on the AIT Manager GUI.

6.5.3.1.3 Desired Response

The SSAP GUI is placed on the screen with a list of SSAPs stored at the Data Server.

6.5.3.1.4 Participating Classes from the Object Model

• DpAtMgrGui

• DpAtSSAPGuiNB

6.5.3.1.5 Scenario Description

a. AIT GUI Manager has been previously displayed.

b. User pulls down UTILITIES menu.

c. User clicks on Science Software Archive Package Tools.

d. Science Software Archive Package GUI is displayed. An Inspect command is made of the
Data Server and a list of existing SSAPs is returned. The list of SSAPs is displayed to the
screen.

6.5.3.1.6 Event Trace

Figure 6.5-7 shows the execution of the SSAP GUI from the AIT Manager.

6-104 305-CD-027-002

MgrGui

AIT Ops Staff
DpAtSSAPGuiNB Data Server

Steps to the Data Server
are detailed in DID313

Inspect scenario primative

UTILITY menu choice

Display GUI

INSPECT

ListSSAPs

return

RunProgram(EcTChar*="DpAtSSAPGuiNB")

Figure 6.5-7. Create the Science Software Archive Package GUI

6-105 305-CD-027-002

6.5.3.2 Editing the List of Files within a Chosen Science Software Archive Package

6.5.3.2.1 Abstract

This scenario describes the manipulation of the files within an SSAP via the Edit SSAP File List
GUI.

6.5.3.2.2 Stimulus

DAAC Operations Staff want to add and delete files from an SSAP. After starting the SSAP GUI
(described in Section 6.5.3.1), the staff selects an SSAP from the displayed list, and chooses the
menu choice to Edit the SSAP File List. Choices are made on the Edit SSAP File List GUI to add
a file to, and delete a file from the chosen SSAP.

6.5.3.2.3 Desired Response

The chosen files are added to and deleted from the SSAP.

6.5.3.2.4 Participating Classes from the Object Model

• DpAtSSAPGuiNB

• DpAtEditSSAPFileListGuiNB

• DpAtAccessNB

6.5.3.2.5 Scenario Description

a. Science Software Archive Package GUI has been previously displayed, complete with a list
of Science Software Archive Packages stored at the Data Server.

b. User selects one of the SSAPs.

c. User clicks on Files.

d. An ACQUIRE command is formed and sent to the Data Server to retrieve the selected
SSAP. The SSAP is placed on the local processor by the Data Server.

e. Science Software Archive Package File List GUI is displayed. A list of all of the files
contained in the selected and retrieved SSAP is placed on the screen.

f. User updates the Directory Location for the files to Add/Replace and selects one of the files
listed in the window. User then clicks Add.

g. The access permissions of the User for the Add File capability are checked. It is assumed
that the User has permission to add a file to the SSAP. The fact that the user is adding a
file to the SSAP is recorded in the Activity Log. If the user does not have permission to
add files to an SSAP an error message is displayed to the screen and step (h) is not done.

h. The selected file is added to the SSAP. The list of files in the SSAP is updated to included
the added file and re-displayed on the screen.

i. The User selects a file in the list of files within the SSAP and clicks Delete.

6-106 305-CD-027-002

j. The access permissions of the User for the Delete File capability are checked. It is assumed
that the User has permission to delete a file from the SSAP. The fact that the user is deleting
a file from the SSAP is recorded in the Activity Log. If the user does not have permission
to delete files from an SSAP an error message is displayed to the screen and step (k) is not
done.

k. The selected file is deleted from the SSAP. The list of files in the SSAP is updated to
remove the deleted file and is re-displayed on the screen.

l. User exits the Edit SSAP File List GUI.

m. The list of SSAPs stored at the Data Server is refreshed on the SSAP GUI. The SSAP GUI
awaits the next user selection. The User is now free to make other changes to the SSAP or
to submit it to the Data Server for archiving.

6.5.3.2.6 Event Trace

Figure 6.5-8 shows the adding and deleting of files from an SSAP.

6-107
305-C

D
-027-002

Figure 6.5-8. Edit the File List of a Science Software Archive Package

AIT Ops Staff
DpAtSSAPGuiNB

DpAtEditSSAPFileListGuiNB
Data Server

The Data Server is accessed only
if the SSAP has not be previously retrieved.

DpAtAccessNB

Steps to the Data Server are
detailed in the DID313 Acquire

scenario primative

DpAtEditSSAPFileListGuiNB
(SSAP)

EditSSAPFiles (SSAP name)

ListSSAPFiles

AddSSAPFile (file + directory)

ListSSAPFiles

DeleteSSAPFile (file)

~DpAtEditSSAPFileListGuiNB

ListSSAPFiles

ListSSAPs

ACQUIRE

CheckAccess
("AddFile")

RecordUpdate

CheckAccess
("DeleteFile")

RecordUpdate

return

6-108 305-CD-027-002

6.5.3.3 Editing the Metadata of the Chosen Science Software Archive Package

6.5.3.3.1 Abstract

This scenario describes the manipulation of the metadata of an SSAP via the Edit SSAP Metadata
GUI.

6.5.3.3.2 Stimulus

DAAC Operations Staff want to edit the metadata of an SSAP. After starting the SSAP GUI
(described in Section 6.5.3.1), the staff selects the SSAP from the displayed list, and chooses the
menu choice to Edit SSAP Metadata. Choices are made on the Edit SSAP Metadata GUI to alter
the metadata of the chosen SSAP.

6.5.3.3.3 Desired Response

The chosen fields in the SSAP metadata are altered.

6.5.3.3.4 Participating Classes from the Object Model

• DpAtSSAPGuiNB

• DpAtEditSSAPMetaDataGuiNB

• DpAtAccessNB

6.5.3.3.5 Scenario Description

a. Science Software Archive Package GUI has been previously displayed, complete with a list
of Science Software Archive Packages stored at the Data Server.

b. User selects one of the SSAPs.

c. User clicks on Metadata.

d. If the SSAP has not been previously retrieved (not shown), an ACQUIRE command is
formed and sent to the Data Server to retrieve the selected SSAP. The SSAP is placed on
the local processor by the Data Server.

e. Science Software Archive Package Metadata GUI is displayed. The metadata is displayed
in parameter=value format.

f. User selects the parameter or value that is to be changed. User enters new value and clicks
Save.

g. The access permissions of the User for the Update Metadata capability are checked. It is
assumed that the User has permission to update SSAP Metadata. The fact that the user is
altering the metadata of the SSAP is recorded in the Activity Log. If the user does not have
permission to alter the metadata of an SSAP an error message is displayed to the screen and
step (h) is not done.

h. The change to the metadata is made in the metadata file that accompanies the SSAP. The
metadata is re-displayed to show the change.

i. User exits the Edit SSAP Metadata GUI.

6-109 305-CD-027-002

j. The list of SSAPs stored at the Data Server is refreshed on the SSAP GUI. The SSAP GUI
awaits the next user selection. The User is now free to make other changes to the SSAP or
to submit it to the Data Server for archiving.

6.5.3.3.6 Event Trace

Figure 6.5-9 shows the updating of the SSAP metadata.

6-110
305-C

D
-027-002

Figure 6.5-9. Edit the Metadata of a Science Software Archive Package

AIT Ops Staff
DpAtSSAPGuiNB

DpAtEditSSAPMetaDataGuiNB

Data Server access is not shown.
If the SSAP had not yet been retrieved from the

Data Server, it would have to be Acquired
as in the EditSSAPFileList event trace.

DpAtAccessNB

DpAtEditSSAPMetaDataGuiNB
(SSAP metadata file)

EditSSAPMetadata

DisplaySSAPMetaData

UpdateSSAPMetaData

DisplaySSAPMetaData

~DpAtEditSSAPMetaDataGuiNB

ListSSAPs

CheckAccess
("UpdateMetadata")

RecordUpdate

6-111 305-CD-027-002

6.5.3.4 Creating a new Science Software Archive Package

6.5.3.4.1 Abstract

This scenario describes the creation of a new Science Software Archive Package.

6.5.3.4.2 Stimulus

DAAC Operations Staff want to create a new SSAP. After starting the SSAP GUI (described in
Section 6.5.3.1), the staff selects an SSAP (to copy into the new SSAP) from the displayed list, and
clicks Create.

6.5.3.4.3 Desired Response

A new SSAP is created that can be manipulated by the user.

6.5.3.4.4 Participating Classes from the Object Model

• DpAtSSAPGuiNB

• DpAtEditSSAPFileListGuiNB

• DpAtAccessNB

6.5.3.4.5 Scenario Description

a. Science Software Archive Package GUI has been previously displayed, complete with a list
of Science Software Archive Packages stored at the Data Server.

b. User selects one of the SSAPs. Note that the User does not have to select an SSAP to copy
from. If no SSAP is selected when the User clicks Create, step (f) is skipped and an SSAP
with an empty file list is displayed in step (g).

c. User clicks on Create.

d. The User is queried for the name of the new SSAP. The User enters the name and clicks
OK.

e. The access permissions of the User for the Create SSAP capability are checked. It is
assumed that the User has permission to create an SSAP. The fact that the user is creating
an SSAP is recorded in the Activity Log. If the user does not have permission to create a
new SSAP an error message is displayed to the screen and the rest of the steps are not done.

f. An ACQUIRE command is formed and sent to the Data Server to retrieve the selected
SSAP. The SSAP is placed on the local processor by the Data Server. The contents of this
SSAP (files, metadata) are copied to the new SSAP being created.

g. Science Software Archive Package File List GUI is displayed to allow the user to
manipulate the files in the new SSAP. A list of all of the files contained in the SSAP is
placed on the screen.

h. User updates the Directory Location for the files to Add/Replace and selects one of the files
listed in the window. User then clicks Add.

6-112 305-CD-027-002

i. The access permissions of the User for the Add File capability are checked. It is assumed
that the User has permission to add a file to the SSAP. The fact that the user is adding a
file to the SSAP is recorded in the Activity Log. If the user does not have permission to
add files to an SSAP an error message is displayed to the screen and step (j) is not done.

j. The selected file is added to the SSAP. The list of files in the SSAP is updated to included
the added file and is re-displayed to the screen.

k. The User selects a file in the list of files within the SSAP and clicks Delete.

l. The access permissions of the User for the Delete File capability are checked. It is assumed
that the User has permission to delete a file from the SSAP. The fact that the user is deleting
a file from the SSAP is recorded in the Activity Log. If the user does not have permission
to delete files from an SSAP an error message is displayed to the screen and step (m) is not
done.

m. The selected file is deleted from the SSAP. The list of files in the SSAP is updated to
remove the deleted file and is re-displayed to the screen.

n. User exits the Edit SSAP File List GUI.

o. The list of SSAPs stored at the Data Server is refreshed. The SSAP GUI awaits the next
user selection. The User is now free to make other changes to the new SSAP or to submit
it to the Data Server for archiving.

6.5.3.4.6 Event Trace

Figure 6.5-10 shows the creation of an SSAP.

6-113
305-C

D
-027-002

Figure 6.5-10. Create a New Science Software Archive Package

AIT Ops Staff
DpAtSSAPGuiNB DpAtEditSSAPFileListGuiNB

Data Server

The Data Server is only
accessed if an SSAP is
selected to copy from.

DpAtAccessNB

Steps to the Data Server are detailed
in the DID313 under the

Acquire Primative

DpAtEditSSAPFileListGuiNB
(SSAP)

CreateSSAP (SSAP Name)

ListSSAPFiles

AddSSAPFile (file + directory)

ListSSAPFiles

DeleteSSAPFile (file)

~DpAtEditSSAPFileListGuiNB

ListSSAPFiles

ListSSAPs

ACQUIRE

CheckAccess ("CreateSSAP")

CheckAccess
("AddFile")

RecordUpdate

CheckAccess
("DeleteFile")

RecordUpdate

return

RecordUpdate (SSAP)

6-114 305-CD-027-002

6.5.3.5 Deleting a Science Software Archive Package

6.5.3.5.1 Abstract

This scenario describes the deletion of a Science Software Archive Package.

6.5.3.5.2 Stimulus

DAAC Operations Staff want to delete an existing SSAP. After starting the SSAP GUI (described
in Section 6.5.3.1), the staff selects the SSAP from the list of SSAPs on the Data Server and clicks
Delete.

6.5.3.5.3 Desired Response

The SSAP is deleted.

6.5.3.5.4 Participating Classes from the Object Model

• DpAtSSAPGuiNB

• DpAtAccessNB

• DsClCommand

• DsClRequest

• GlParameter

• GlParameterList

6.5.3.5.5 Scenario Description

a. Science Software Archive Package GUI has been previously displayed, complete with a list
of Science Software Archive Packages stored at the Data Server.

b. User selects one of the SSAPs.

c. User clicks on Delete.

d. The access permissions of the User for the Delete SSAP capability are checked. It is
assumed that the User has permission to delete an SSAP. The fact that the user is deleting
an SSAP is recorded in the Activity Log. If the user does not have permission to delete an
SSAP an error message is displayed to the screen and step (e) is not done.

e. A DELETE command is formed and sent to the Data Server to remove the selected SSAP.

f. The list of SSAPs stored at the Data Server is refreshed so that the deleted SSAP is no
longer shown. The SSAP GUI awaits the next user selection. The User is now free to make
changes to other SSAPs.

6.5.3.5.6 Event Trace

Figure 6.5-11 shows the creation of an SSAP.

6-115
305-C

D
-027-002

Figure 6.5-11. Delete a Science Software Archive Package

AIT Ops Staff
DpAtSSAPGuiNB

DsClCommand

DsClRequest GlParameter GlParameterList

DpAtAccessNB

DeleteSSAP(SSAP Name)

Submit

ListSSAPs

DsClCommand

SetCatagory

SetServiceName (Delete)

ctor
ctor

Insert

SetParameters

ctor

CheckAccess
("DeleteSSAP")

RecordUpdate (SSAP)

6-116 305-CD-027-002

6.5.3.6 Submitting a changed Science Software Archive Package to the Data
Server

6.5.3.6.1 Abstract

This scenario describes the Insertion of a changed SSAP to the Data Server. This could either be
a previously existing SSAP, or a new SSAP created by the Operations Staff.

6.5.3.6.2 Stimulus

DAAC Operations Staff have finished their changes to the current SSAP and want it stored back
on the Data Server. The staff clicks Submit.

6.5.3.6.3 Desired Response

The SSAP is archived to the Data Server.

6.5.3.6.4 Participating Classes from the Object Model

• DpAtSSAPGuiNB

6.5.3.6.5 Scenario Description

a. Science Software Archive Package GUI has been previously displayed, complete with a list
of Science Software Archive Packages stored at the Data Server. Changes have been made
to the currently selected SSAP.

b. User clicks on Submit.

c. An INSERT command is formed and sent to the Data Server to insert the changed SSAP.

d. The list of SSAPs stored at the Data Server is refreshed so that the changed SSAP shows
the updated version. The SSAP GUI awaits the next user selection. The User is now free
to make changes to other SSAPs.

6.5.3.6.6 Event Trace

Figure 6.5-12 shows the submission of an SSAP.

6-117
305-C

D
-027-002

Figure 6.5-12. Submit an Updated Science Software Archive
Package to the Data Server

AIT Ops Staff
DpAtSSAPGuiNB

Data Server

Steps to the Data Server
are detailed in the DID313
Insert scenario primative

SubmitSSAP (SSAP name)

ListSSAPs

INSERT

return

6-118 305-CD-027-002

6.5.4 PGE Registration Scenarios

This section describes scenarios for the Registration of a PGE in the PDPS database via the AITTL
PGE Registration GUIs.

6.5.4.1 Updating the Activation Rule Information for an Existing Time Scheduled
PGE

6.5.4.1.1 Abstract

This scenario describes the altering of a Time Scheduled PGE's activation rule information through
the PGE Activation Rule GUI.

6.5.4.1.2 Stimulus

DAAC Operations Staff want to update a Time Scheduled PGE's activation rule information. The
staff chooses the PGE Activation Rule GUI option from the PGE Registration GUI.

6.5.4.1.3 Desired Response

The PGE activation rule attributes are changed and stored in the PDPS database.

6.5.4.1.4 Participating Classes from the Object Model

• DpAtPgeRegistrationGui

• DpAtPgeActivationRuleB

• PlTimeScheduled

• DpPrDbInterface

6.5.4.1.5 Scenario Description

a. PGE Registration GUI has been previously displayed.

b. User clicks Activation Rule.

c. PGE Activation Rule GUI is displayed. The Time Scheduled attributes for the current PGE
are retrieved from the PDPS database via the class DpPrDbInterface. The attributes and
their values are displayed to the screen.

d. User chooses an attribute to modify and enters the new value. User clicks OK.

e. The change is made to the local copy of the Time Scheduled attributes and the update is
displayed to the screen.

f. User clicks on Submit.

g. The change to the Time Scheduled attribute is stored in the PDPS database via the class
DpPrDbInterface.

h. User exits the PGE Activation Rule GUI and is returned to the PGE Registration GUI.

6.5.4.1.6 Event Trace

Figure 6.5-13 shows updating an existing Time Scheduled PGE's activation rule information.

6-119
305-C

D
-027-002

Figure 6.5-13. Update an Exiting Time Scheduled PGE’s Profile

AIT Ops Staff
DpAtSSAPGuiNB

Data Server

Steps to the Data Server
are detailed in the DID313
Insert scenario primative

SubmitSSAP (SSAP name)

ListSSAPs

INSERT

return

6-120 305-CD-027-002

6.5.4.2 Updating the Activation Rule Information for an Existing Tile Scheduled
PGE

6.5.4.2.1 Abstract

This scenario describes the altering of a Tile Scheduled PGE's activation rule information and
corresponding Tile Clustering scheme information, through the PGE Activation Rule GUI.

6.5.4.2.2 Stimulus

DAAC Operations Staff want to update a Tile Scheduled PGE's activation rule information. The
staff chooses the PGE Activation Rule GUI option from the PGE Registration GUI.

6.5.4.2.3 Desired Response

The PGE activation rule attributes, and the corresponding Tile Cluster definition, are changed and
stored in the PDPS database.

6.5.4.2.4 Participating Classes from the Object Model

• DpAtPgeRegistrationGui

• DpAtPgeActivationRuleB

• PlTileScheduledNB

• PlCluster

• DpPrDbInterface

6.5.4.2.5 Scenario Description

a. PGE Registration GUI has been previously displayed.
b. User clicks Activation Rule.
c. PGE Activation Rule GUI is displayed. The Tile Scheduled attributes, plus the PlCluster

attributes, for the current PGE are retrieved from the PDPS database via the class
DpPrDbInterface. The attributes and their corresponding values are displayed to the
screen.

d. User chooses a Tile Scheduled attribute to modify and enters the new value. User clicks
OK.

e. The change is made to the local copy of the Tile Scheduled attributes and the update is
displayed to the screen.

f. User chooses a Cluster attribute to modify and enters a new value. User clicks OK.
g. The change is made to the local copy of the Cluster and the update is displayed on the

screen.
h. User clicks on Submit.
i. The changes to the Tile Scheduled information and the Cluster are stored in the PDPS

database via the class DpPrDbInterface.
j. User exits the PGE Activation Rule GUI and is returned to the PGE Registration GUI.

6.5.4.2.6 Event Trace

Figure 6.5-14 shows updating an existing Time Scheduled PGE's activation rule information.

6-121
305-C

D
-027-002

Figure 6.5-14. Update an Existing Tile Scheduled PGE’s Profile

AIT Ops Staff
DpAtPgeRegistration DpAtPgeActivationRuleB DpPrDbInterfacePlTimeScheduled

UpdateActivationRule
(PGEID)

~DpAtPgeActivationRuleB

DpAtPgeActivationRule
(PGEProfileID)

DisplayActRuleAttr

UpdateActRuleAttr

SubmitToDatabase

ctor

Set

DisplayActRuleAttr

UpdateObject

ctor

ReadObject

dtor

6-122 305-CD-027-002

6.5.4.3 Creating the Activation Rule Information for a new Data Scheduled PGE

6.5.4.3.1 Abstract

This scenario describes the creation of a Data Scheduled PGE's activation rule information,
through the PGE Activation Rule GUI.

6.5.4.3.2 Stimulus

DAAC Operations Staff want to create a Data Scheduled PGE's activation rule information. The
staff chooses the PGE Activation Rule GUI option from the PGE Registration GUI.

6.5.4.3.3 Desired Response

The PGE activation rule attributes are created and stored in the PDPS database.

6.5.4.3.4 Participating Classes from the Object Model

• DpAtPgeRegistrationGui

• DpAtPgeActivationRuleB

• PlDataScheduled

• DpPrDbInterface

6.5.4.3.5 Scenario Description

a. PGE Registration GUI has been previously displayed.

b. User clicks Activation Rule.

c. PGE Activation Rule GUI is displayed. Since the PGE is new, no attributes are displayed
because the activation rule type of the PGE is not known.

d. User selects Data Scheduled for the activation rule and clicks OK.

e. The Data Scheduled attributes are displayed to the screen with empty (null) values.

f. User chooses each Data Scheduled attribute to modify and enters the new value. User
clicks OK after each update.

g. Each change is made to the local copy of the Data Scheduled attributes and the update is
displayed to the screen.

h. User clicks on Submit.

i. The new Data Scheduled information is stored in the PDPS database via the class
DpPrDbInterface.

j. User exits the PGE Activation Rule GUI and is returned to the PGE Registration GUI.

6.5.4.3.6 Event Trace

Figure 6.5-15 shows creating a new Data Scheduled PGE's activation rule information.

6-123
305-C

D
-027-002

Figure 6.5-15. Create a New Data Scheduled PGE’s Activation Rule

AIT Ops Staff
DpAtPgeRegistration DpAtPgeActivationRuleB DpPrDbInterfacePlDataScheduled

UpdateActivationRule
(PGEID)

~DpAtPgeActivationRuleB

DpAtPgeActivationRule
(PGEProfileID)

SetPGEActivationType
(DataScheduled)

DisplayActRuleAttr

UpdateActRuleAttr

UpdateActRuleAttr

UpdateActRuleAttr

SubmitToDatabase

ctor

Set

Set

Set

DisplayActRuleAttr

DisplayActRuleAttr

DisplayActRuleAttr

InsertRow

ctor

dtor

6-124 305-CD-027-002

6.5.4.4 Creating the Activation Rule Information for a new Orbit Scheduled PGE

6.5.4.4.1 Abstract

This scenario describes the creation of an Orbit Scheduled PGE's activation rule information and
the corresponding Orbit Model, through the PGE Activation Rule GUI.

6.5.4.4.2 Stimulus

DAAC Operations Staff want to create an Orbit Scheduled PGE's activation rule information. The
staff chooses the PGE Activation Rule GUI option from the PGE Registration GUI.

6.5.4.4.3 Desired Response

The PGE activation rule attributes, and the corresponding Tile Cluster definition, are changed and
stored in the PDPS database.

6.5.4.4.4 Participating Classes from the Object Model

• DpAtPgeRegistrationGui

• DpAtPgeActivationRuleB

• PlOrbitScheduledNB

• PlOrbitModelNB

• DpPrDbInterface

6.5.4.4.5 Scenario Description

a. PGE Registration GUI has been previously displayed.
b. User clicks Activation Rule.
c. PGE Activation Rule GUI is displayed. Since the PGE is new, no attributes are displayed

because the activation rule type of the PGE is not known.
d. User selects Orbit Scheduled for the activation rule and clicks OK.
e. The Orbit Scheduled attributes are displayed to the screen with empty (null) values. An

empty Orbit Model (attributes with null values) is also displayed.
f. User chooses each Orbit Scheduled attribute to modify and enters the new value. User

clicks OK after each update.
g. Each change is made to the local copy of the Orbit Scheduled attributes and the update is

displayed to the screen.
h. User chooses each Orbit Model attribute to modify and enters the new value. User clicks

OK after each update.
i. Each change is made to the local copy of the Orbit Model attributes and the update is

displayed to the screen.
j. User clicks on Submit.
k. The new Orbit Scheduled information and the Orbit Model are stored in the PDPS database

via the class DpPrDbInterface.
l. User exits the PGE Activation Rule GUI and is returned to the PGE Registration GUI.

6-125 305-CD-027-002

6.5.4.4.6 Event Trace

Figure 6.5-16 shows creating a new Orbit Scheduled PGE's activation rule information.

6-126
305-C

D
-027-002

Figure 6.5-16. Create a New Orbit Scheduled PGE’s Activation Rule

AIT Ops Staff
DpAtPgeRegistration DpAtPgeActivationRuleB DpPrDbInterfacePlOrbitScheduledNB

PlOrbitModelNB

UpdateActivationRule
(PGEID)

~DpAtPgeActivationRuleB

DpAtPgeActivationRule
(PGEProfileID)

SetPGEActivationType
(OrbitScheduled)

DisplayActRuleAttr

UpdateActRuleAttr

UpdateActRuleAttr

UpdateActRuleAttr

SubmitToDatabase

ctor

Set

Set

DisplayActRuleAttr

DisplayActRuleAttr

DisplayActRuleAttr

InsertRow

UpdateActRuleAttr
SetDisplayActRuleAttr

ctor

DisplayOrbitModel

Set

UpdateOrbitModel
Set

DisplayOrbitModel

UpdateOrbitModel Set
DisplayOrbitModel

UpdateOrbitModel
Set

DisplayOrbitModel

ctor

dtor

6-127 305-CD-027-002

6.6 CSCI Functional Model
The sections which follow present a context diagram for each of the components of AITTL. These
components, or tools, correspond to the computer software components (CSCs) listed below in
Section 6.7, AITTL Structure.

6.6.1 Viewing Science Software Documentation

The context diagram for the tools to display and/or print science software documentation is shown
in Figure 6.6-1.

The operator issues a command (Document Viewing Command) to view a particular document on
the display (Displayed Document), or to print a hard copy (Printed Document) of a document. A
soft copy of the document (Document) is stored online in the local integration and test area (Science
Software).

6-128
305-C

D
-027-002

Figure 6.6-1. View Documentation

View
Documentation

Printer

Operator
Science
Software

This System

Document

Displayed Document

Document Viewing Command

Printed Document

6-129 305-CD-027-002

6.6.2 Checking Coding Standards

The context diagram for the standards checkers is shown in Figure 6.6-2.

The operator issues a command (Standards Checking Command) to check for compliance of a
particular script (Shell Script) or source file (Source Code), or set of files, with certain standards
and/or guidelines. The operator also must supply the standards checkers with the required
standards (Standards) and guidelines (Guidelines) (only once, when the tools are configured). The
results of the check (Standards Checking Results) are displayed on the console.

Reports may be generated as well, which may be displayed (Displayed Standards Checking
Reports), printed (Printed Standards Checking Reports), and saved as soft copy (Standards
Checking Report).

6-130
305-C

D
-027-002

Figure 6.6-2. Check Standards

Check
Standards

Printer

Operator

I&T Results

Science
Software

This System

Printed Stardards
Checking Reports

Standards Checking
Report

Source Code,
Shell Script

Standards,
Guidelines,

Standards Checking Command

Standards Checking Results,
Displayed Standards

Checking Reports

6-131 305-CD-027-002

6.6.3 Analyzing the Code

The context diagram for the static and dynamic code checkers is shown in Figure 6.6-3.

The operator issues a command (Code Analysis Command) to make certain checks, either
statistically on the source files (Source Code), or dynamically on the executables (Executable). The
results (Code Analysis Results) of the checks are displayed on the console. Reports may also be
generated, and these may be displayed (Displayed Code Analysis Report), printed (Printed Code
Analysis Report), or saved as a soft copy (Code Analysis Report).

6-132
305-C

D
-027-002

Figure 6.6-3. Analyze Code

Analyze
Code

Operator

Printer
I&T Results

Science
Software

This System

Printed Code
Analysis Report

Code Analysis
Report

Source Code,
Executable

Code Analysis Command

Code Analysis Results,
Displayed Code
Analysis Report

6-133 305-CD-027-002

6.6.4 Examining the Data

The context diagram for the data visualization tools is shown in Figure 6.5-4.

The operator issues a command (Data Visualization Command) to examine a particular data file.
The data visualization tools may display the data in the form of a data dump (Displayed Data
Dump), a two- or three-dimensional plot (Displayed Plot), or an image (Displayed Image). These
displays may also be printed (Printed Data Dump, Printed Plot, Printed Image) or saved as a soft
copy (Data Dump, Plot, Image).

6-134
305-C

D
-027-002

Figure 6.6-4. Examine Data

Examine
Data

Printer

Operator

I&T Results

Science
Software

This System

Printed Data Dump,
Printed Plot,

Printed Image

Data Dump,
Plot,

Image

Data File

Displayed Data Dump,
Displayed Plot,

Displayed Image

Data Visualization
Command

6-135 305-CD-027-002

6.6.5 Comparing Data Files

The context diagram for the file comparison utility is shown in Figure 6.6-5.

The operator issues a command (File Comparison Command) to find all differences between two
data files (Data Files to Compare). Normally, one of these files will have been generated by
running a particular test case at the SCF, while the other will have been generated by running the
same test case at the DAAC. If there are precision differences between the SCF and DAAC
processing platforms, there will be corresponding differences between the two data files which
should be ignored. Therefore, the operator will also supply a threshold (File Comparison
Threshold) for masking out these types of differences. The results (File Comparison Results) of
the file comparison are displayed on the console. Reports may also be generated, and these may be
displayed (Displayed File Comparison Report), printed (Printed File Comparison Report), or
saved as a soft copy (File Comparison Report). Please note that this section applies directly to HDF
files. For binary files, the ECS supplies a programming environment which the DAAC Operator
used to write custom binary file comparison code.

6-136
305-C

D
-027-002

Figure 6.6-5. Compare Files

Compare
Files

Printer

Operator

I&T Results

Science
Software

This System

Printed File
Comparison Report File Comparison

Report

Data Files To Compare

File Comparison Results,
Displayed File

Comparison Report

File Comparison Threshold,
File Comparison Command

6-137 305-CD-027-002

6.6.6 Measuring Resource Requirements

The context diagram for the profiling tools is shown in Figure 6.6-6.

The operator issues a command (Profiling Command) to measure certain resource usage statistics,
such as CPU time, memory usage, I/O accesses, disk space requirements, etc., for a specified
process or procedure (Shell Script, Executable). The profiling results (Profiling Results) are
displayed on the console. Reports may also be generated, and these may be displayed (Displayed
Profiling Report), printed (Printed Profiling Report), or saved as a soft copy (Profiling Report).

6-138
305-C

D
-027-002

Figure 6.6-6. Measure Resource Requirements

Measure
Resource

Requirements

Printer

Operator

I&T Results

Science
Software

This System

Printed Profiling Report Profiling Report

Shell Script,
Executable

Profiling Results,
Displayed Profiling Report

Profiling Command

6-139 305-CD-027-002

6.6.7 Update Science Software Archive Package Tool

The context diagram for the archiving and updating of the Science Software Archive Packages on
the Data Server is shown in Figure 6.6-7.

The purpose of this tool is to allow the user to add, delete, and modify Science Software Archive
Packages at the Data Server once the executable software has passed acceptance testing. The set
of files in a Science Software Archive Package may include not only the delivered files (Science
Software) and their metadata, but also some of the reports (I&T Report) generated during
integration and test. The operator issues various commands (Science Software Archive Package
Commands), such as commands to view the current contents of an SSAP, to add new science
software files to the SSAP, to update the metadata, and so on. In return, the results of operator
commands, a list of SSAPs at the Data Server or the contents of an SSAP are displayed to the
operator (Science Software Archive Package Information).

Requests (Science Software Archive Package Request) are sent to the Data Server to Acquire,
Inspect, or Insert SSAPs (which includes the Science Software Archive Package to be Inserted);
the Data Server responds to the requests with the requested information (Data Server Information,
Science Software Archive Package), and a response (Science Software Archive Package Request
Response).

6-140
305-C

D
-027-002

Figure 6.6-7. Update SSAP

Update
Data

Server

Data
Server

Operator

I&T Results

Science
Software

This System

Science Software Archive Package
Requests,

Science Software Archive Package
Updates

Data Server
Information,

Science Software Archive Packages,
Science Software Archive Package

Request Responses

I&T Report

Science Software Archive Package
Commands

Science Software Archive Package
Information

6-141 305-CD-027-002

6.6.8 Updating the PGE Profile

The context diagram for the tool for updating the PGE Profile is shown in Figure 6.6-8.

The operator issues commands (PGE Profile Commands) to add, delete, or view information from
the PDPS database. The PDPS Database is a shared database used by Planning, Processing and
Algorithm Integration and Test to manage their persistent data. These commands (PGE Profile
Commands) are passed onto Planning (PGE Profile Request, PGE Profile Update) which performs
the commands on the PDPS Database and returns responses (PGE Profile Request Responses) and
information about the PGE Profile (PGE Profile Information). The information within the PGE
Profile is passed back to the operator (PGE Profile Information) along with any command
responses (PGE Profile Command Responses).

6-142
305-C

D
-027-002

Figure 6.6-8. Update PGE Profile

Update
PGE

Profile

Planning

Operator

This System

PGE Profile Information,
PGE Profile Request Responses

PGE Profile Request,
PGE Profile Update

PGE Profile Commands

PGE Profile Command Responses,
PGE Profile Information

6-143 305-CD-027-002

6.6.9 Writing Reports and Maintaining Logs

The context diagram for tools to generate and maintain the integration and test reports and logs is
shown in Figure 6.6-9.

The operator issues commands (Report Management Command) to create/modify specified reports
(I&T Report) and logs (I&T Log), supplying the required information (Report Information, Log
Information) and/or using information from other manually- or tool-generated reports (I&T
Report), and using pre-generated report templates (I&T Templates). The operator may also display
(Displayed I&T Report, Displayed I&T Log) or print (Printed I&T Report) any report or log, and
any authorized user may display the log.

6-144
305-C

D
-027-002

Figure 6.6-9. Manage Reports

Manage
Reports

Authorized
User

Printer

Operator

I&T Results

I&T Templates

I&T Log

This System

I&T Report
Printed

I&T
Report

Log Display Command

Displayed I&T Log

Report Information,
Log Information,

Report Management Command

Displayed I&T Report,
Displayed I&T Log

I&T Report

6-145 305-CD-027-002

6.6.10 Manually Staging Inputs

The context diagram for the tool for manually staging inputs is shown in Figure 6.6-10.

The operator issues commands (Data Staging Command) to manually stage a specified data file
from the data server. The request (Data Transfer Request) is passed onto the data server, which
returns the requested file (Data File), which is then placed in the staging area (Staged Data). Status
(Data Staging Status) is displayed on the operator's console.

6-146
305-C

D
-027-002

Figure 6.6-10. Manually Stage Data

Manually
Stage Data

Data
Server

Operator

Staged Data

This System Data File

Data File

Data Transfer Request

Data Staging Command

Data Staging Status

6-147 305-CD-027-002

6.6.11 Displaying Product Metadata

The context diagram for the tool for displaying product metadata is shown in Figure 6.6-11.

The operator issues commands (Metadata Command) to display the product metadata (Displayed
Product Metadata) for a specified data file (Data File). The metadata may also be extracted into a
report, which may be displayed (Displayed Product Metadata Report), printed (Printed Product
Metadata Report), or saved as a soft copy (Product Metadata Report).

6-148
305-C

D
-027-002 Figure 6.6-11. Display Product Metadata

Display
Product

Metadata

Printer

Operator

I&T Results

Science
Software

This System

Printed Product
Metadata Report

Product Metadata Report

Data File

Metadata Command

Displayed Product Metadata,
Displayed Product Metadata Report

6-149 305-CD-027-002

6.7 AITTL Operational Scenarios
The following three operational scenarios are intended to give an idea of how the science software
integration and test process will be done, as well as illustrating where in the process the AITTL
tools might be used by the SCF and DAAC I&T personnel. These scenarios were developed by the
ECS Science Office and assume ECS Release B.

6.7.1 Engineering Version for AM-1

1) SCF sends 200 8-mm tapes containing test data files, expected test result files and
associated metadata file. These tapes contain 11,000 files averaging 50 MB each.

2) DAAC Ingest - Distribution Technician mounts the delivered tapes and transfers these files
to the Data Server/Archive.

3) DAAC Operations Supervisor has an Investigator Account opened for the SCF, an
Investigator Directory created, and a CM storage pool allocated specifically for use in
SSI&T.

4) The SCF transfers the science software (e.g., via ftp) to the Investigator Directory, and
checks the source, includes, makefiles, scripts and libraries into the CM storage pool.

5) DAAC Resource Planner reserves 1 CPU of a Processing Server during day shift for use by
SSI&T for the requested duration.

6) SCF remotely (e.g., via telnet) performs stand-alone testing of individual PGEs and PGE
chains, employing the various AITTL tools in a “batch” mode (e.g., the data visualization
tool is used to generate a graphics file, which is the transferred to the local site for display).
Test data files are requested as needed from the Data Server/Archive.

7) When standalone testing is complete, SCF labels the “Delivery” elements in the SSI&T
CM storage pool.

8) DAAC CM Administrator builds binary executables, checks out PGE scripts and submits
these to Data Server (along with appropriate metadata).

9) DAAC Production Planner/Scheduler enters the test PGE information (e.g., PGE ID and
Version No., resource profiles, inputs, activation rules) into the PDPS Data Base.

10) The SCF subscribes to the test PGE outputs.

11) DAAC System Tester requests test data from the Data Server and stages it to Ingest.

12) DAAC Production Planner/Scheduler schedules execution of test run through PDPS,
processing is performed, and the PGE output and processing log files are automatically sent
to the SCF with a data quality request notification.

13) SCF verifies PGE output.

14) The SCF checks the “Delivery” items out from the CM storage pool and transfers these
elements (employing a DCE client) from the Investigator Directory to the SCF.

15) The DAAC performs cleanup work.

6-150 305-CD-027-002

The CM Administrator deletes the SSI&T storage pool. The DAAC Production Planner removes
the SSI&T PGEs from the planning Data Base and cancels any remaining Production Request(s)
for those PGEs. The DAAC closes the Investigator Account and removes the Investigator
Directory.

6.7.2 Launch-Ready Version for TRMM

1) SCF requests that 11,000 previously delivered test data files be staged from deep archive
to Data Server/Archive on-line storage.

2) The Data Server/Archive retrieves these files from deep archive.
3) DAAC Operations Supervisor has a User Account opened for the SCF, an Investigator

Directory created, and a CM storage pool allocated specifically for use in SSI&T.
4)-14) Steps 4-14 of the “Engineering Version for AM-1” scenario are performed.
15) The DAAC CM Administrator uses the SSAP GUI tools to create a Science Software

Archive Package entry in the Data Server and copies the “Delivery” elements from the
SSI&T CM storage pool to the new Science Software Archive Package entry. Then the
Administrator deletes the SSI&T CM storage pool.

16) The Production Planner/Scheduler enters Production Requests for product generation using
the Launch-ready PGEs.

(The DAAC and SCF complete the operations readiness activities, and the new PGE is promoted
to production status.)

6.7.3 Science Software Upgrade

1) SCF requests that 24 previously delivered test data files be staged from deep archive to
Data Server/Archive on-line storage.

2) The Data Server/Archive retrieves these files from deep archive.
3) DAAC Operations Supervisor has a User Account opened for the SCF, an Investigator

Directory created, and a CM storage pool allocated specifically for use in SSI&T.
4)-14) Steps 4-14 of the “Engineering Version for AM-1” scenario are performed.
15) The DAAC CM Administrator uses the SSAP GUI tools to modify the original version of

the Science Software Archive Package that contains the upgraded PGE in the Data Server
and copies the “Delivery” elements from the SSI&T CM storage pool to the new SSAP
entry. Then the Administrator deletes the SSI&T CM storage pool.

16) The Production Planner/Scheduler enters Production Requests for product generation using
the new version of the Launch-ready PGE.

6.8 AITTL Structure
Table 6-1 provides a list of the Computer Software Components in the AITTL CSCI and Table 6-
2 provides a mapping of objects to CSCs.

Note that all software is callable from the UNIX command line; alternatively, it may be called from
the AIT Manager GUI. Command line versions are shown in brackets [], where they differ from
the GUI versions.

In implementing custom code, some SDP Toolkit functions are reused, primarily to track AIT
configuration files and manage temporary files.

6-151 305-CD-027-002

Table 6-1. AITTL Computer Software Components
CSC Description Implementation

Documentation Viewing
Tools

Tools for displaying and/or printing the
science software documentation

SoftWindows/MS
Office Ghostview

Standards
Checkers

Tools for checking if science software
follows prescribed coding standards.

Native compilers]
FORCHECK

Code Analysis Tools Tools for checking for code memory
leaks, etc.

CASEVision
SPARCWorks

Data Visualization Tools Diagnostic tools which display input,
output, and intermediate data files as
data dumps, plots, and/or images.

IDL

ECS HDF
Visualization Tools

Provides the capability to view any ECS-
HDF formatted files.

EOSView

HDF File
Comparison Utility

Tool for finding differences between two
HDF files,

DpAtMgrCheckHdfFile

Binary File
Comparison
Environment

Tool for assisting DAAC user in writing
custom code to find differences between
two binary files

DpAtMgrBinaryFileEnvironmentGui

Profiling Tools Tools for measuring the resource
requirements of the science software

CASEVision

Science Software Archive
Package GUIs

GUIs for view and altering Science
Software Archive Packages

DpAtSSAPGuiNB
DpAtEditSSAPFileListGuiNB
DpAtEditSSAPMetaDataGuiNB
DpAtAccessNB

Acquire and Insert GUI GUI used for staging (Acquiring) or
destaging (Inserting) data.

DpPrAITManualIF

PGE Registration GUIs GUIs for registering a PGE with PDPS DpAtPgeRegistrationGui
DpAtPgeUserParametersGui
DpAtPgeDataTypesGui
DpAtPgeActivationRuleB

Report Generation Tools Tools for writing miscellaneous reports
and for maintaining the integration and
test log

SoftWindows/MS Office
DpAtMgrCom

SDP Toolkit-
related Tools

Tool to check Process Control File
format; tool to check that no prohibited
functions are used

DpAtMgrCheckPcfGui [pccheck.sh]
DpAtMgrCheckProhibFunc
[DpAtMgrCheckProhibFuncCom]

Product Metadata Display
Tool

Tool for displaying the product metadata DpAtMgrCheckHdfFile

6-152 305-CD-027-002

6.8.1 Documentation Viewing Tools

This CSC contains the tools that the integration and test personnel will use to view the science
software documentation. The tools only need to be able to display a document on a console and
print the document—there is no editing capability required. The list of formats that will be accepted
is given in 304-CD-002-001, Science and Data Processing Segment (SDPS) Requirements
Specification for the ECS Project (see requirements S-DPS-40100 and 40110).

The Microsoft Office automation tools, in conjunction with the SoftWindows Windows emulator
for Sun, is used here.

Table 6-2. Mapping of objects to CSCs
Object GUI

DpAtPGERegistrationFile PGE Registration GUIs
DpAtPgeActivationRuleB PGE Registration GUIs
DpAtPgeDataTypes PGE Registration GUIs
DpAtPgeRegistationGui PGE Registration GUIs
DpAtPgeUserParameters PGE Registration GUIs
PlAlternate PGE Registration GUIs
PlCluster PGE Registration GUIs
PlDataScheduled PGE Registration GUIs
PlDataTypeB PGE Registration GUIs
PlDataTypeReqB PGE Registration GUIs
PlOrbitModelNB PGE Registration GUIs
PlOrbitScheduledNB PGE Registration GUIs
PlOutputYield PGE Registration GUIs
PlPGE PGE Registration GUIs
PlPGEProfile PGE Registration GUIs
PlPerformance PGE Registration GUIs
PlResourceRequirement PGE Registration GUIs
PlTile PGE Registration GUIs
PlTileScheduledNB PGE Registration GUIs
PlTimeScheduled PGE Registration GUIs
PlUserParameters PGE Registration GUIs
DpAtAccessNB Science Software Archive Package GUIs
DpAtEditSSAPFileListGuiNB Science Software Archive Package GUIs
DpAtEditSSAPMetaDataGuiNB Science Software Archive Package GUIs
DpAtSSAPFile Science Software Archive Package GUIs
DpAtSSAPGuiNB Science Software Archive Package GUIs
DsClCommand Science Software Archive Package GUIs
DsClESDTReferenceCollector Science Software Archive Package GUIs
DsClRequest Science Software Archive Package GUIs
GlParameter Science Software Archive Package GUIs
GlParameterList Science Software Archive Package GUIs
DpPrAITManualIF Acquire and Insert GUI
DsClCommand Acquire and Insert GUI
DsClESDTReferenceCollector Acquire and Insert GUI
DsClRequest Acquire and Insert GUI

6-153 305-CD-027-002

6.8.2 Standards Checkers

This CSC contains the standards checking tools. Native language compilers satisfy the
requirements here, except in the case of FORTRAN 77. For that language, a COTS standards
checker is used, because most if not all compilers support a near-standard subset of ANSI
FORTRAN 77; it is expected that essentially all FORTRAN 77 science software will contain these
extensions to the ANSI standard.

6.8.3 Code Analysis Tools

These tools are for enabling DAAC personnel to determine the causes of such problems as memory
leaks. They include the powerful analysis environments SPARCWorks (on the Sun) and
CASEVision (on the SGI).

6.8.4 Data Visualization Tools

This CSC contains the data visualization tool IDL, required by the integration and test personnel
to examine input, output, and intermediate data files for diagnostic purposes (but not for QA).

6.8.5 ECS HDF Visualization Tools

This CSC is the ECS-developed EOSView tool for viewing ECS HDF files. The tool is reused from
the WKBCH CSCI.

6.8.6 HDF File Comparison Utility

This CSC contains the HDF file comparison utility. It is implemented by a custom IDL program,
which includes a GUI front end. Difference data may optionally be displayed as text, as a line graph
with tolerances, or printed.

The first time a given HDF standard product is compared, the DAAC user must manually input
data tolerances that s/he reads by eye from a text file delivered with the science software.

6.8.7 Binary File Comparison Environment

This CSC contains the binary file comparison environment. This is implemented by a GUI from
which the user can choose example code and function utilities to cut and paste for making a custom
file differencing tool, tailored to the particular binary file format. This format is also available from
the GUI, as delivered in a text file along with the science software.

6.8.8 Profiling Tools

This CSC contains the profiling (i.e., resource requirement measurement) tools. These tools must
satisfy any of the AITTL profiling requirements that are not satisfied by the development
environments or operating systems supplied by the AITHW CI. CASEVision covers this.

6.8.9 Science Software Archive GUIs

This CSC contains the GUIs used to view and alter Science Software Archive Packages at the Data
Server. The functionality is supplied by classes DpAtSSAPGuiNB,
DpAtEditSSAPFileListGuiNB, DpAtEditSSAPMetaDataGuiNB, and DpAtAccessNB.

6-154 305-CD-027-002

6.8.10 Acquire and Insert GUI

This CSC contains the GUI/tool that provides an interface to the Data Server for manually staging
(Acquiring) and destaging (Inserting) of data files. This functionality is supplied by
DpPrManualIF.

6.8.11 PGE Registration GUIs

This CSC contains the GUIs used to register a PGE in the PDPS database. This functionality is
supplied by DpAtPgeRegistrationGui, DpAtPgeUserParametersGui, DpAtPgeDataTypesGui,
DpAtPgeActivationRuleB.

6.8.12 Report Generation Tools

This CSC contains the tools to write and maintain the integration and test reports and logs. All but
the log requirements are satisfied by SoftWindows/MS Office; the AIT Manager covers the need
for a log.

6.8.13 SDP Toolkit-related Tools

These tools (a) check the format of a delivered Process Control File and (b) determine whether any
prohibited functions are used, which might interfere with the processing system. Modules
DpAtMgrCheckPcfGui (which is a wrapper on an existing SDP Toolkit utility) and
DpAtMgrCheckProhibFuncGui are used, respectively.

6.8.14 Product Metadata Display Tool

This CSC contains the tool for displaying product metadata. It is implemented by
DpAtMgrCheckHdfFile, the same tool as in "HDF File Comparison Utility" above.

6.9 CSCI Management and Operation

6.9.1 System Management Strategy

This section discuss the management and operation of the AITTL CSCI. It addresses how the CI
is managed at the local level and supports system level management and operations.

Three key concepts define the management and operations of this CSCI. These are that:

a. The AIT process is essentially standalone relative to the rest of the ECS system

b. AIT is operations and operational procedure driven.

c. The AITTL CSCI must support the flexibility of operations required of an I&T activity.

The following paragraphs discuss these features further, indicating how the AITTL CSCI supports
this view of management and operations.

Independent Operations

From the point of view of system management and operations, the AITTL operates in essentially
a standalone mode, apart from the rest of the ECS. Its purpose is to support the integration and test
of Science Software with the ECS system at the DAACs. This is a non-operational CSCI in the
sense that it is not involved with the handling or processing of science telemetry from EOS
supported spacecraft or instruments. During the operational phases, hardware elements on which

6-155 305-CD-027-002

the AITTL will run during integration and test (I&T) will be specially configured so that they do
not interfere with operations, and operations does not interfere with the test process.

The AITTL does not participate with the system management services provided through MSS for
operational enterprise management, such as fault management and startup & shutdown. Note
however, that the hardware platforms on which the AITTL tool set is used during I&T will be
monitored via MSS agents for hardware faults. The tool set makes use of MSS provided
configuration management tools to place the science software under configuration management
during the I&T process for eventual migration into operational configuration control databases.
The operational procedures AITTL call for the use of ECS standard 'trouble ticketing' utilities for
recording of problems identified during I&T. Other system services, such as ingest and data server
access, will be used to establish the environment for the I&T process. But the I&T process and the
AITTL CSCI will be decoupled from the operational ECS system.

Operations Procedure Driven

A key concept for the operation involving AITTL is that the AIT process, as with almost any
integration and test activity, is a people-intensive activity. It is driven by the operational procedures
established by the DAAC-AIT team in consultation with the science software developers. The
management of the AITTL is dictated by the management of AIT operations procedures. The tool
set supports this view in that it is a collection of tools that is called upon, one at a time, to address
one of the steps in the sequence of activities in the procedure. Evolution of the I&T operations
procedures (as the result of increased understanding of the process and the software) is supported
because there is no underlying assumption within the tool set implementation with regard to the
details of the I&T operations procedures.

6-156 305-CD-027-002

Flexibility of Operations

A critical feature of the AITTL CSCI is that it must exhibit great flexibility to support the dynamic
environment that is a part of the I&T process. The AIT process, particularly during the TRMM
Release period, will be greatly constrained in the time allotment. The personnel (operations, ECS,
and science software) involved in the process must be able to adapt quickly to address unexpected
situations as they arise during I&T. The tool set is flexible enough to support the many variations
that can be expected to occur during the many science software integration and test events. Again,
because the tool set does not assume a particular operations procedure, the tools can be readily
adapted to variations in the procedures, from one instrument team to another. The tool set can
support adaptation of the procedure 'on-the-fly' as problems are detected and alternate approaches
to the I&T process are investigated. This is because the AITTL CSCI is a collection of tools that
support the I&T operations procedure—as the operations procedure is updated or modified, the
tool set support can be redirected.

6.9.2 Operator Interfaces

This subsection describes the operator user interfaces provided by the AITTL CSCI to DAAC
operations personnel. A general description of the framework and methodology employed for the
development of these interfaces can be found in Section 4.5. of the Detailed Design Overview
(305-CD-001-001). This subsection augments that information with additional design information
which is specific to the Algorithm Integration & Test CSCI.

The operator user interfaces for the algorithm integration & test environment are custom and COTS
provided interfaces. This custom graphical interface will be created with the aid of the Integrated
Computer Solutions' Builder Xcessory. Builder Xcessory enables the developer to manage Motif
graphical user interface projects by providing a WYSIWYG, drag and drop, visual development
environment. Once an interface is constructed, Builder Xcessory will generate C++ code which
represents the GUI and encapsulates the C-based Motif Widget set. The generated C++ code can
then be combined with other AITTL CSCI specific code.

6.9.2.1 Algorithm Integration & Test CSCI User Interfaces

This section is intended to describe the data that may be displayed for the operations of the AITTL
CSCI's applications. The exact definition of the GUIs will be decided by requesting user
suggestions and through demonstrating prototypes.

AI&T Manager GUI

The AI&T Manager GUI is an interface which provides the operations staff with the capability to
perform various AI&T activities which are defined as data visualization, updating quality
assurance metadata, and subscribing to data. The AI&T Manager GUI will be constructed with
custom code which interfaces to the PDPS Database for storage of PGE Profile and other AI&T
persistent data.

As part of the GUI, utilities will be provided to initiate data visualization tools, such as EOSVIEW,
which will be used to visualize a science data product. Other tools needed to perform AI&T duties,
including standards checkers, memory analyzers, and office automation tools can also be invoked
from this tool. Also, provided is an interface to manually initiate the staging of data to or destaging
of data from the Science Data Server CSCI.

6-157 305-CD-027-002

AI&T Science Software Archive GUIs

The AI&T Science Software Archive GUIs provide the operations staff with an interface to the
capability to perform alterations on the Science Software Archive Packages stored at the Data
Server. It is started from the UTILITY menu of the AI&T Manager GUI.

AI&T PGE Registration GUIs

The AI&T PGE Registration GUIs provide the operations staff with an interface to the capability
to alter/view PGE Profiles in the PDPS database. It is started from the UTILITY menu of the AI&T
Manager GUI.

6.9.3 Reports

A variety of ad-hoc and canned reports will be available to the DAAC operations staff to assist in
the monitoring of the activities associated with the Algorithm Integration & Test CSCI. These
reports are readily accessible given that the Algorithm Integration & Test CSCI persistent data is
maintained in the PDPS Database, a SYBASE RDBMS. Also, ECS application management
information is maintained in the MSS database, which is used to log system events. The canned
reports will include the following:

a. PGE Profile Reports—these reports will be used to catalog the resource profile information
associated with a PGE. This information, which includes generation size of PGE Output
data, CPU Wall Clock Time Used, CPU actual time Used, I/O Operations, etc., is captured
over a series of PGE executions. A profile will be captured for each type of machine, i.e.,
Sun, SGI, etc., for which the PGE is to execute. Statistics will be collected to establish
standard deviations, variances, and averages of resource profile values. These reports will
be used to collate this information for a PGE, for a type of resource, or for a given group of
PGEs used to fulfill a Production Request.

b. I & T Activity Report—these reports will capture information about the activities which
have occurred and activities which are occurring in the Algorithm Integration and Test
environment.

c. PGE Profile Update Report—these reports will capture information to track the updates
which have occurred in the PDPS Database to PGE Profiles.

d. PGE I&T Reports—these reports capture information on PGEs as they progress through
the AI&T process. These reports will be used to trouble shoot problems and will provide
tracking and trend analysis guidance.

1. Code Analysis Report

2. Standards Checker Report

3. File Comparison Reports

4. AI & T Discrepancy Reports

5. Inspection Reports

6. Integration Reports

7. Acceptance Reports

6-158 305-CD-027-002

e. Algorithm Integration & Test Management Reports—These reports will provide the
operations staff information on Algorithm Integration and Test application software events
which have occurred. This information will be available from the MSS database.

Other ad-hoc reports can be defined to assist the Algorithm Integration & Test Operations staff in
performing their activities. The PDPS Database is the repository used to maintain information on
Production Requests and associated Data Processing Requests, Data Subscriptions, PGE Profiles,
etc. These reports can be used to track modifications and provide historical information on these
data objects. Because of the used of a consistent RDBMS throughout ECS, the sharing of
information between different databases is simplified and will allow for consistent definitions for
any number of reports.

	6. AITTL - Algorithm I&T CSCI
	6.1 CSCI Overview
	6.2 CSCI Context
	Figure 6.2-1. AITTL Context Diagram

	6.3 CSCI Obect Model
	6.3.1 AIT Manager GUI View
	Figure 6.3-1. AIT Manager GUI Obect Model

	6.3.2 Science Software Archive Package (SSAP) GUI View
	Figure 6.3-2. Science Software Archive Package GUI Obect Model

	6.3.3 PGE Registration GUI View
	Figure 6.3-3. PGE Registration Obect Model

	6.3.4 Manual Staging and Destaging Tool View
	Figure 6.3-4. Manual Staging and Destaging Interface

	6.4 CSCI Class Descriptions
	6.4.1 Analysisenvironment Class
	6.4.2 CMscript Class
	6.4.3 DpAtAccessNB Class
	6.4.4 DpAtEditSSAPFileListGuiNB Class
	6.4.5 DpAtEditSSAPMetaDataGuiNB Class
	6.4.6 DpAtMgr Class
	6.4.7 DpAtMgrBinaryFileEnvironmentGui Class
	6.4.8 DpAtMgrCheckHdfFile Class
	6.4.9 DpAtMgrCheckPcfGui Class
	6.4.10 DpAtMgrCheckProhibFuncCom Class
	6.4.11 DpAtMgrCheckProhibFuncGui Class
	6.4.12 DpAtMgrChecklistData Class
	6.4.13 DpAtMgrCmdLineData Class
	6.4.14 DpAtMgrCom Class
	6.4.15 DpAtMgrGuiActivityData Class
	6.4.16 DpAtMgrInstrConfigData Class
	6.4.17 DpAtMgrLogData Class
	6.4.18 DpAtMgrProhibFuncListData Class
	6.4.19 DpAtPGERegistrationFile Class
	6.4.20 DpAtPgeActivationRuleB Class
	6.4.21 DpAtPgeDataTypes Class
	6.4.22 DpAtPgeRegistation Class
	6.4.23 DpAtPgeRegistationGui Class
	6.4.24 DpAtPgeUserParameters Class
	6.4.25 DpAtProcGui Class
	6.4.26 DpAtSSAPFile Class
	6.4.27 DpAtSSAPGuiNB Class
	6.4.28 DpPrAITManualIF Class
	6.4.29 DsClCommand Class
	6.4.30 DsClESDTReferenceCollector Class
	6.4.31 DsClRequest Class
	6.4.32 EosView Class
	6.4.33 FORTRAN77codechecker Class
	6.4.34 Generalvisualizationtool Class
	6.4.35 GlParameter Class
	6.4.36 GlParameterList Class
	6.4.37 Instrument-specificscript Class
	6.4.38 MgrGui Class
	6.4.39 PlAlternate Class
	6.4.40 PlCluster Class
	6.4.41 PlDataScheduled Class
	6.4.42 PlDataTypeB Class
	6.4.43 PlDataTypeReqB Class
	6.4.44 PlOrbitModelNB Class
	6.4.45 PlOrbitScheduledNB Class
	6.4.46 PlOutputYield Class
	6.4.47 PlPGE Class
	6.4.48 PlPGEProfile Class
	6.4.49 PlPerformance Class
	6.4.50 PlResourceRequirement Class
	6.4.51 PlTile Class
	6.4.52 PlTileScheduledNB Class
	6.4.53 PlTimeScheduled Class
	6.4.54 PlUserParameters Class
	6.4.55 Postscriptfileviewer Class
	6.4.56 Text-graphicsviewer Class
	6.4.57 Webbrowser Class
	6.4.58 Windowsemulator Class
	6.4.59 xterm Class

	6.5 CSCI Dynamic Model
	6.5.1 AIT Manager GUI Scenarios
	Figure 6.5-1. Display AIT Manager GUI Event Trace
	Figure 6.5-2. Run Tools Item Event Trace
	Figure 6.5-3. Run Utility Menu Item Event Trace
	Figure 6.5-4. Select Checklist Item

	6.5.2 Acquiring and Inserting Data Scenarios
	Figure 6.5-5. Submit Staging Request
	Figure 6.5-6. Submit Destaging Request

	6.5.3 Science Software Archive Package GUI Scenarios
	Figure 6.5-7. Create the Science Software Archive Package GUI
	Figure 6.5-8. Edit the File List of a Science Software Archive Package
	Figure 6.5-9. Edit the Metadata of a Science Software Archive Package
	Figure 6.5-10. Create a New Science Software Archive Package
	Figure 6.5-11. Delete a Science Software Archive Package
	Figure 6.5-12. Submit an Updated Science Software Archive Package to the Data Server

	6.5.4 PGE Registration Scenarios
	Figure 6.5-13. Update an Exiting Time Scheduled PGE’s Profile
	Figure 6.5-14. Update an Existing Tile Scheduled PGE’s Profile
	Figure 6.5-15. Create a New Data Scheduled PGE’s Activation Rule
	Figure 6.5-16. Create a New Orbit Scheduled PGE’s Activation Rule

	6.6 CSCI Functional Model
	6.6.1 Viewing Science Software Documentation
	Figure 6.6-1. View Documentation

	6.6.2 Checking Coding Standards
	Figure 6.6-2. Check Standards

	6.6.3 Analyzing the Code
	Figure 6.6-3. Analyze Code

	6.6.4 Examining the Data
	Figure 6.6-4. Examine Data

	6.6.5 Comparing Data Files
	Figure 6.6-5. Compare Files

	6.6.6 Measuring Resource Requirements
	Figure 6.6-6. Measure Resource Requirements

	6.6.7 Update Science Software Archive Package Tool
	Figure 6.6-7. Update SSAP

	6.6.8 Updating the PGE Profile
	Figure 6.6-8. Update PGE Profile

	6.6.9 Writing Reports and Maintaining Logs
	Figure 6.6-9. Manage Reports

	6.6.10 Manually Staging Inputs
	Figure 6.6-10. Manually Stage Data

	6.6.11 Displaying Product Metadata
	Figure 6.6-11. Display Product Metadata

	6.7 AITTL Operational Scenarios
	6.7.1 Engineering Version for AM-1
	6.7.2 Launch-Ready Version for TRMM
	6.7.3 Science Software Upgrade

	6.8 AITTL Structure
	6.8.1 Documentation Viewing Tools
	6.8.2 Standards Checkers
	6.8.3 Code Analysis Tools
	6.8.4 Data Visualization Tools
	6.8.5 ECS HDF Visualization Tools
	6.8.6 HDF File Comparison Utility
	6.8.7 Binary File Comparison Environment
	6.8.8 Profiling Tools
	6.8.9 Science Software Archive GUIs
	6.8.10 Acquire and Insert GUI
	6.8.11 PGE Registration GUIs
	6.8.12 Report Generation Tools
	6.8.13 SDP Toolkit-related Tools
	6.8.14 Product Metadata Display Tool

	6.9 CSCI Management and Operation
	6.9.1 System Management Strategy
	6.9.2 Operator Interfaces
	6.9.3 Reports

